Extrapolation of compactness for certain pseudodifferential operators

Authors

  • María J. Carro Department of Analysis and Applied Mathematics, Complutense University of Madrid, 28040 Madrid, Spain
  • Javier Soria Interdisciplinary Mathematics Institute (IMI), Department of Analysis and Applied Mathematics, Complutense University of Madrid, 28040 Madrid, Spain
  • Rodolfo H. Torres Department of Mathematics, University of California, Riverside, CA 92521, USA

DOI:

https://doi.org/10.33044/revuma.4365

Abstract

A recently developed extrapolation of compactness on weighted Lebesgue spaces is revisited and a new application to a class of compact pseudodifferential operators is presented.

Downloads

Download data is not yet available.

References

J. Alvarez and C. Pérez, Estimates with $A_∞$ weights for various singular integral operators, Boll. Un. Mat. Ital. A (7) 8 no. 1 (1994), 123–133.  MR  Zbl

A. Bényi and R. H. Torres, Compact bilinear operators and commutators, Proc. Amer. Math. Soc. 141 no. 10 (2013), 3609–3621.  DOI  MR  Zbl

B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232.  DOI  MR  Zbl

A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.  DOI  MR  Zbl

M. Cao, A. Olivo, and K. Yabuta, Extrapolation for multilinear compact operators and applications, Trans. Amer. Math. Soc. 375 no. 7 (2022), 5011–5070.  DOI  MR  Zbl

A. Clop and V. Cruz, Weighted estimates for Beltrami equations, Ann. Acad. Sci. Fenn. Math. 38 no. 1 (2013), 91–113.  DOI  MR  Zbl

H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Functional Analysis 18 (1975), 115–131.  DOI  MR  Zbl

J. Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 no. 6 (2011), 1886–1901.  DOI  MR  Zbl

C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 no. 3-4 (1972), 137–193.  DOI  MR  Zbl

J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985.  MR  Zbl

E. Harboure, R. A. Macías, and C. Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 no. 3 (1988), 383–397.  DOI  MR  Zbl

T. Hytönen and S. Lappas, Extrapolation of compactness on weighted spaces: bilinear operators, Indag. Math. (N.S.) 33 no. 2 (2022), 397–420.  DOI  MR  Zbl

T. Hytönen and S. Lappas, Extrapolation of compactness on weighted spaces, Rev. Mat. Iberoam. 39 no. 1 (2023), 91–122.  DOI  MR  Zbl

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.  DOI  MR  Zbl

C. Pérez and R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, in Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math. 320, Amer. Math. Soc., Providence, RI, 2003, pp. 323–331.  DOI  MR  Zbl

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993.  MR  Zbl

C. B. Stockdale, P. Villarroya, and B. D. Wick, Sparse domination results for compactness on weighted spaces, Collect. Math. 73 no. 3 (2022), 535–563.  DOI  MR  Zbl

R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 90 no. 442 (1991).  DOI  MR  Zbl

A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J. (2) 30 no. 1 (1978), 163–171.  DOI  MR  Zbl

Q. Xue, K. Yabuta, and J. Yan, Weighted Fréchet-Kolmogorov theorem and compactness of vector-valued multilinear operators, J. Geom. Anal. 31 no. 10 (2021), 9891–9914.  DOI  MR  Zbl

Downloads

Published

2023-09-21