Learning the model from the data

Authors

  • Carlos Cabrelli Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina and IMAS, Instituto de Investigaciones Matemáticas Luis A. Santaló, UBA–CONICET
  • Ursula Molter Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina and IMAS, Instituto de Investigaciones Matemáticas Luis A. Santaló, UBA–CONICET

DOI:

https://doi.org/10.33044/revuma.4371

Abstract

The task of approximating data with a concise model comprising only a few parameters is a key concern in many applications, particularly in signal processing. These models, typically subspaces belonging to a specific class, are carefully chosen based on the data at hand. In this survey, we review the latest research on data approximation using models with few parameters, with a specific emphasis on scenarios where the data is situated in finite-dimensional vector spaces, functional spaces such as $L^2(\mathbb{R}^d)$, and other general situations. We highlight the invariant properties of these subspace-based models that make them suitable for diverse applications, particularly in the field of image processing.s

Downloads

Download data is not yet available.

References

A. Aldroubi, C. Cabrelli, D. Hardin, and U. Molter, Optimal shift invariant spaces and their Parseval frame generators, Appl. Comput. Harmon. Anal. 23 no. 2 (2007), 273–283.  DOI  MR  Zbl

A. Aldroubi, C. Cabrelli, C. Heil, K. Kornelson, and U. Molter, Invariance of a shift-invariant space, J. Fourier Anal. Appl. 16 no. 1 (2010), 60–75.  DOI  MR  Zbl

M. Anastasio, C. Cabrelli, and V. Paternostro, Invariance of a shift-invariant space in several variables, Complex Anal. Oper. Theory 5 no. 4 (2011), 1031–1050.  DOI  MR  Zbl

D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Optimal translational-rotational invariant dictionaries for images, in Proc. SPIE 11138, Wavelets and Sparsity XVIII, 2019.  DOI

D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Approximation by group invariant subspaces, J. Math. Pures Appl. (9) 142 (2020), 76–100.  DOI  MR  Zbl

D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Data approximation with time-frequency invariant systems, in Landscapes of Time-Frequency Analysis—ATFA 2019, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2020, pp. 29–42.  DOI  MR  Zbl

L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. (Erste Abh.), Math. Ann. 70 no. 3 (1911), 297–336.  DOI  MR  Zbl

L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abh.), Math. Ann. 72 no. 3 (1912), 400–412.  DOI  MR  Zbl

C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in $L_2(R^d)$, J. Funct. Anal. 119 no. 1 (1994), 37–78.  DOI  MR  Zbl

C. Cabrelli and C. A. Mosquera, Subspaces with extra invariance nearest to observed data, Appl. Comput. Harmon. Anal. 41 no. 2 (2016), 660–676.  DOI  MR  Zbl

C. Cabrelli, C. A. Mosquera, and V. Paternostro, An approximation problem in multiplicatively invariant spaces, in Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, Contemp. Math. 693, Amer. Math. Soc., Providence, RI, 2017, pp. 143–165.  DOI  MR  Zbl

C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (1936), 211–218.  DOI  Zbl

D. R. Farkas, Crystallographic groups and their mathematics, Rocky Mountain J. Math. 11 no. 4 (1981), 511–551.  DOI  MR  Zbl

B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.  MR  Zbl

H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.  MR  Zbl

J. S. Lomont, Applications of Finite Groups, Dover, New York, 1993.  MR  Zbl

G. E. Martin, Transformation Geometry: An Introduction to Symmetry, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.  MR  Zbl

E. Schmidt, Zur Theorie der linearen und nicht linearen Integralgleichungen. Zweite Abhandlung: Auflösung der allgemeinen linearen Integralgleichung, Math. Ann. 64 no. 2 (1907), 161–174.  DOI  MR  Zbl

R. Tessera and H. Wang, Uncertainty principles in finitely generated shift-invariant spaces with additional invariance, J. Math. Anal. Appl. 410 no. 1 (2014), 134–143.  DOI  MR  Zbl

J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.  MR  Zbl

H. Zassenhaus, Beweis eines Satzes über diskrete Gruppen, Abh. Math. Sem. Univ. Hamburg 12 no. 1 (1938), 289–312.  DOI  MR  Zbl

Downloads

Published

2023-09-21