Learning the model from the data
DOI:
https://doi.org/10.33044/revuma.4371Abstract
The task of approximating data with a concise model comprising only a few parameters is a key concern in many applications, particularly in signal processing. These models, typically subspaces belonging to a specific class, are carefully chosen based on the data at hand. In this survey, we review the latest research on data approximation using models with few parameters, with a specific emphasis on scenarios where the data is situated in finite-dimensional vector spaces, functional spaces such as $L^2(\mathbb{R}^d)$, and other general situations. We highlight the invariant properties of these subspace-based models that make them suitable for diverse applications, particularly in the field of image processing.s
Downloads
References
A. Aldroubi, C. Cabrelli, D. Hardin, and U. Molter, Optimal shift invariant spaces and their Parseval frame generators, Appl. Comput. Harmon. Anal. 23 no. 2 (2007), 273–283. DOI MR Zbl
A. Aldroubi, C. Cabrelli, C. Heil, K. Kornelson, and U. Molter, Invariance of a shift-invariant space, J. Fourier Anal. Appl. 16 no. 1 (2010), 60–75. DOI MR Zbl
M. Anastasio, C. Cabrelli, and V. Paternostro, Invariance of a shift-invariant space in several variables, Complex Anal. Oper. Theory 5 no. 4 (2011), 1031–1050. DOI MR Zbl
D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Optimal translational-rotational invariant dictionaries for images, in Proc. SPIE 11138, Wavelets and Sparsity XVIII, 2019. DOI
D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Approximation by group invariant subspaces, J. Math. Pures Appl. (9) 142 (2020), 76–100. DOI MR Zbl
D. Barbieri, C. Cabrelli, E. Hernández, and U. Molter, Data approximation with time-frequency invariant systems, in Landscapes of Time-Frequency Analysis—ATFA 2019, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2020, pp. 29–42. DOI MR Zbl
L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. (Erste Abh.), Math. Ann. 70 no. 3 (1911), 297–336. DOI MR Zbl
L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abh.), Math. Ann. 72 no. 3 (1912), 400–412. DOI MR Zbl
C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in $L_2(R^d)$, J. Funct. Anal. 119 no. 1 (1994), 37–78. DOI MR Zbl
C. Cabrelli and C. A. Mosquera, Subspaces with extra invariance nearest to observed data, Appl. Comput. Harmon. Anal. 41 no. 2 (2016), 660–676. DOI MR Zbl
C. Cabrelli, C. A. Mosquera, and V. Paternostro, An approximation problem in multiplicatively invariant spaces, in Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, Contemp. Math. 693, Amer. Math. Soc., Providence, RI, 2017, pp. 143–165. DOI MR Zbl
C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (1936), 211–218. DOI Zbl
D. R. Farkas, Crystallographic groups and their mathematics, Rocky Mountain J. Math. 11 no. 4 (1981), 511–551. DOI MR Zbl
B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. MR Zbl
H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964. MR Zbl
J. S. Lomont, Applications of Finite Groups, Dover, New York, 1993. MR Zbl
G. E. Martin, Transformation Geometry: An Introduction to Symmetry, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. MR Zbl
E. Schmidt, Zur Theorie der linearen und nicht linearen Integralgleichungen. Zweite Abhandlung: Auflösung der allgemeinen linearen Integralgleichung, Math. Ann. 64 no. 2 (1907), 161–174. DOI MR Zbl
R. Tessera and H. Wang, Uncertainty principles in finitely generated shift-invariant spaces with additional invariance, J. Math. Anal. Appl. 410 no. 1 (2014), 134–143. DOI MR Zbl
J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967. MR Zbl
H. Zassenhaus, Beweis eines Satzes über diskrete Gruppen, Abh. Math. Sem. Univ. Hamburg 12 no. 1 (1938), 289–312. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Carlos Cabrelli, Ursula Molter
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.