Los fundamentos conceptuales del modelo gravitacional de comercio: una revisión de la literatura

Autores/as

DOI:

https://doi.org/10.52292/j.estudecon.2023.3267

Palabras clave:

Modelo gravitacional, Fundamentos conceptuales, Comercio, Modelo de equilibrio general

Resumen

El trabajo reseña el estado de la literatura referida al modelo gravitacional de comercio, su utilidad práctica y sus microfundamentos, cuyo explicitación permitió la incorporación de esta herramienta a la corriente principal de pensamiento de la economía internacional. Los aportes conceptuales en este campo del conocimiento han permitido derivar la ecuación gravitacional desde enfoques que postulan distintos tipos de modelos de equilibrio general; asumiendo diferentes estructuras de mercado y diversos grados de heterogeneidad entre firmas de la industria considerada. La literatura aplicada sobre el tema da cuenta de la existencia de una frondosa discusión referida a las fricciones vinculadas a la distancia geográfica entre países, que cobra particular interés en el contexto actual de globalización.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agnosteva, D., Anderson, J., & Yotov, Y. (2019). Intra-national trade costs: assaying regional frictions. European Economic Review, 112, 32-50. https://doi.org/10.1016/j.euroecorev.2018.11.008 DOI: https://doi.org/10.1016/j.euroecorev.2018.11.008

Aitken, N. (1973). The Effect of EEC and EFTA on European Trade: A Temporal Cross-Section Analysis. American Economic Review, 63(5), 881-892. http://www.jstor.org/stable/1813911

Anderson, J. (1979). A Theoretical Foundation for the Gravity Equation. American Economic Review, 69(1), 106-116. https://www.jstor.org/stable/1802501

Anderson, J. (2011). The Gravity Model. Annual Review of Economics, 3(1), 133-160. https://doi.org/10.1146/annurev-economics-111809-125114 DOI: https://doi.org/10.1146/annurev-economics-111809-125114

Anderson, J., & van Wincoop, E. (2004). Trade Costs. Journal of Economic Literature, 42(3.), 691-751. https://www.jstor.org/stable/3217249 DOI: https://doi.org/10.1257/0022051042177649

Anderson, J., & van Wincoop, E. (2003). Gravity with Gravitas: A Solution to the Border Puzzle. American Economic Review, 93(1), 170-192. DOI: https://doi.org/10.1257/000282803321455214

Anderson, J., &Yotov, Y. (2012). Gold Standard Gravity. (National Bureau of Economic Research, Working Paper No. 17835). https://doi.org/10.3386/w17835 DOI: https://doi.org/10.3386/w17835

Anderson, J., & Yotov, Y. (2020). Short run gravity. Journal of International Economics, 126, September, 103341. https://doi.org/10.1016/j.jinteco.2020.103341 DOI: https://doi.org/10.1016/j.jinteco.2020.103341

Arkolakis, C. (2010). Market Penetration Costs and the New Consumers Margin in International Trade. Journal of Political Economy, 118(6), 1151-1199. https://doi.org/10.1086/657949 DOI: https://doi.org/10.1086/657949

Arkolakis, C., Costinot, A., & Rodríguez-Claire, A. (2012). New Trade Models, Same Old Gains? American Economic Review, 102(1), 94-130. https://doi.org/10.1257/aer.102.1.94 DOI: https://doi.org/10.1257/aer.102.1.94

Armington, P. (1969). A Theory of Demand for Products Distinguished by Place of Production. Staff Papers (International Monetary Fund), 16(1), 159-178. https://doi.org/10.2307/3866403 DOI: https://doi.org/10.2307/3866403

Baier, S., & Bergstrand, J. (2009). Estimating the effects of free trade agreements on international trade flows using matching econometrics. Journal of International Trade, 77, 63-76. https://doi.org/10.1016/j.jinteco.2008.09.006 DOI: https://doi.org/10.1016/j.jinteco.2008.09.006

Bergstrand, J. (1985). The Gravity Equation in International Trade: some Microeconomic Foundations and Empirical Evidence. Review of Economics and Statistics, 67(3), 474-481. https://doi.org/10.2307/1925976 DOI: https://doi.org/10.2307/1925976

Bergstrand, J., & Egger, P. (2013). Gravity Equations and Economic Frictions in the World Economy. En D. Greenaway, R. Falvey, U. Kreickemeier, & D. Bernhofen (Eds.), Palgrave Handbook of International Trade (pp. 532-570). London: Palgrave Macmillan https://doi.org/10.1007/978-0-230-30531-1

Boulhol, H., & de Serres, A. (2010). Have Developed Countries Escaped the Curse of Distance? Journal of Economic Geography, 10(1), 113-139. https://doi.org/10.1093/jeg/lbp015 DOI: https://doi.org/10.1093/jeg/lbp015

Broda, C., & Weinstein, D. (2004). Globalization and the Gains from Variety. (National Bureau of Economic Research , Working Paper No. 10314). https://doi.org/10.3386/w10314 DOI: https://doi.org/10.3386/w10314

Brun, J., Carrere, C., Guillaumont, P., & de Melo, J. (2005). Has Distance Died? Evidence from a Panel Gravity Model. World Bank Economic Review, 19(1), 99-120. https://www.jstor.org/stable/40282208 DOI: https://doi.org/10.1093/wber/lhi004

Buch, C., Kleinert, J., & Toubal, F. (2004). The Distance Puzzle: on the Interpretation of the Distance Coefficient in Gravity Equations. Economic Letters, 83(3), 293-298. https://doi.org/10.1016/j.econlet.2003.10.022 DOI: https://doi.org/10.1016/j.econlet.2003.10.022

Campos, R., Timini, J., & Muñoz, E. (2021). Structural gravity and trade agreements: does the measurement of domestic trade matter? (Banco de España, Working Paper No. 2117). http://dx.doi.org/10.2139/ssrn.3847753 DOI: https://doi.org/10.2139/ssrn.3847753

Carrère, C., & Schiff, M. (2005). On the Geography of Trade. Distance is Alive and Well. Revue économique, 56(6), 1249-1274. https://doi.org/10.3917/reco.566.1249 DOI: https://doi.org/10.3917/reco.566.1249

Chaney, T. (2008). Distorted Gravity: The Intensive and Extensive Margins of International Trade. American Economic Review, 98(4), 1707-1721. https://doi.org/10.1257/aer.98.4.1707 DOI: https://doi.org/10.1257/aer.98.4.1707

Costinot, A., & Rodríguez-Clare, A. (2013). Trade Theory with Numbers: Quantifying the Consequences of Globalization. (National Bureau of Economic Research, Working Ppaer No. 18896). https://doi.org/10.3386/w18896 DOI: https://doi.org/10.3386/w18896

Crucini, M., Davis, S. (2016). Distribution capital and the short-run and long-run import demand elasticity. Journal of International Economics, 100(C), 203-219. https://doi.org/10.1016/j.jinteco.2016.03.010 DOI: https://doi.org/10.1016/j.jinteco.2016.03.010

De Benedictis, L., & Taglioni, D. (2011). The Gravity Model in International Trade. En L. De Benedictis, & L. Salvatici, The trade impact of European Union preferential policies: An analysis through gravity models (pp. 55-89). Berlin, Heidelberg: Springer. DOI: https://doi.org/10.1007/978-3-642-16564-1_4

Disdier, A., & Head, K. (2008). The Puzzling Persistence of the Distance Effect on Bilateral Trade. Review of Economics and Statistics, 90(1), 37-48. https://www.jstor.org/stable/40043123 DOI: https://doi.org/10.1162/rest.90.1.37

Dixit, A., & Stiglitz, J. (1977). Monopolistic competition and optimum product diversity. American Economic Review, 67(3), 297-308. https://www.aeaweb.org/aer/top20/67.3.297-308.pdf

Dornbusch, R., Fischer, S., & Samuelson, P. (1977). Comparative Advantage, Trade, and Payments in a Ricardian Model with a Continuum of Goods. American Economic Review, 67(5), 823-839.

Eaton, J., & Kortum, S. (2002). Technology, Geography and Trade. Econometrica, 70(5), 1741-1779. https://doi.org/10.1111/1468-0262.00352 DOI: https://doi.org/10.1111/1468-0262.00352

Egger, P., Larch, M., Staub, K., & Winkelmann, R. (2011). The Trade Effects of Endogeneous Preferential Trade Agreements. American Economic Journal: Economic Policy, 3(3), 113-143. https://doi.org/10.1257/pol.3.3.113 DOI: https://doi.org/10.1257/pol.3.3.113

Feenstra, R. (2003). Advanced International Trade: Theory and Evidence. New Jersey: Princeton University Press.

Head, K., & Mayer, T. (2014). Gravity Equations: Workhorse, Toolkit, and Cookbook. In R. Jones, P. Kenen, G. Grossman, & K. Rogoff (Edits.), Handbook of Internatinal Economics Vol. 4. (Cap. 3, pp. 131-195). Ámsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-54314-1.00003-3 DOI: https://doi.org/10.1016/B978-0-444-54314-1.00003-3

Helpman, E., & Krugman, P. (1985). Market structure and foreign trade. Cambridge: MIT Press.

Helpman, E., Melitz, M., & Rubinstein, Y. (2008). Estimating trade flows: Trading partners and trading volumes. The Quarterly Journal of Economics, 123(2), 441-487. https://doi.org/10.1162/qjec.2008.123.2.441 DOI: https://doi.org/10.1162/qjec.2008.123.2.441

Hummels, D. (1999). Toward a Geography of Trade Costs. (GTAP, Working Paper No. 17). https://www.gtap.agecon.purdue.edu/resources/download/2876.pdf DOI: https://doi.org/10.2139/ssrn.160533

Krugman, P. (1979). Increasing Returns, Monopolistic Competition, and International Trade. Journal of International Economics, 9(4), 469-479. http://dx.doi.org/10.1016/0022-1996(79)90017-5 DOI: https://doi.org/10.1016/0022-1996(79)90017-5

Larch, M., Norbäck, P., Sirries, S., & Urban, D. (2016). Heterogeneous firms, Globalisation and the Distance Puzzle. The World Economy, 39(9), 1307-1338. DOI: https://doi.org/10.1111/twec.12303

Linnemann, H. (1967). An Econometric Study of International Trade Flows. The Econometric Journal, 77(306), 366-368. https://doi.org/10.2307/2229319 DOI: https://doi.org/10.2307/2229319

McDaniel, C., & Balistreri, E. (2002). A Discussion on Armington Trade Substitution Elasticities. (United States International Trade Commission, Working Papers No. 15856). https://www.usitc.gov/publications/332/ec200201a.pdf DOI: https://doi.org/10.2139/ssrn.296510

Melitz, M. (2003). The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. Econometrica, 71(6), 1695-1725. https://www.jstor.org/stable/1555536 DOI: https://doi.org/10.1111/1468-0262.00467

Sapir, A. (1981). Trade Benefits under the EEC Generalized System of Preferences. European Economic Review, 15(3), 339-355. https://doi.org/10.1016/S0014-2921(81)80006-2 DOI: https://doi.org/10.1016/S0014-2921(81)80006-2

Simonovska, I., & Waugh, M. (2011). The Elasticity of Trade: Estimates and Evidence. (National Bureau of Economic Research, Working Ppaer No. 16796). https://doi.org/10.3386/w16796 DOI: https://doi.org/10.3386/w16796

Tinbergen, J. (1962). Shaping the World Economy. New York: Twentieth Century Fund.

Yotov, Y. (2012). A Simple Solution to the Distance Puzzle in International Trade. Economic Letters, 117(3), 794-798. https://doi.org/10.1016/j.econlet.2012.08.032 DOI: https://doi.org/10.1016/j.econlet.2012.08.032

Yotov, Y., Piermartini, R., Monteiro, J.-A., & Larch, M. (2016). An Advanced Guide to Trade Policy Analysis: The Structural Gravity Model Online Revised Version (Vol. 2). Geneva: United Nations and World Trade Organization. https://www.wto.org/english/res_e/booksp_e/advancedwtounctad2016_e.pdf DOI: https://doi.org/10.30875/abc0167e-en

Yotov, Y. (2022). On the role of domestic trade flows for estimating the gravity model of trade, Contemporary Economic Policy, 40(3), 526-540. https://doi.org/10.1111/coep.12567 DOI: https://doi.org/10.1111/coep.12567

Descargas

Publicado

2022-12-28

Cómo citar

Lacaze, M. V. (2022). Los fundamentos conceptuales del modelo gravitacional de comercio: una revisión de la literatura. Estudios económicos, 40(80), 251–279. https://doi.org/10.52292/j.estudecon.2023.3267

Número

Sección

Notas y Comentarios