On Baer modules

Authors

  • Chillumuntala Jayaram University of West Indies, Department of CMP, Bridgetown, Barbados
  • Ünsal Tekir Marmara University, Department of Mathematics, Istanbul, Turkey
  • Suat Koç Istanbul Medeniyet University, Department of Mathematics, Istanbul, Turkey

DOI:

https://doi.org/10.33044/revuma.1741

Abstract

A commutative ring $R$ is said to be a Baer ring if for each $a\in R$, $\operatorname{ann}(a)$ is generated by an idempotent element $b\in R$. In this paper, we extend the notion of a Baer ring to modules in terms of weak idempotent elements defined in a previous work by Jayaram and Tekir. Let $R$ be a commutative ring with a nonzero identity and let $M$ be a unital $R$-module. $M$ is said to be a Baer module if for each $m\in M$ there exists a weak idempotent element $e\in R$ such that $\operatorname{ann}_{R}(m)M=eM$. Various examples and properties of Baer modules are given. Also, we characterize a certain class of modules/submodules such as von Neumann regular modules/prime submodules in terms of Baer modules.

Downloads

Download data is not yet available.

References

D. D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On $S$-multiplication modules, Comm. Algebra 48 (2020), no. 8, 3398–3407. MR 4115356.

D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3–56. MR 2462381.

F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York, 1974. MR 0417223.

M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969. MR 0242802.

A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174–178. MR 0627431.

G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639–660. MR 1841988.

Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755–779. MR 0932633.

M. W. Evans, On commutative P. P. rings, Pacific J. Math. 41 (1972), 687–697. MR 0314827.

E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207–224. MR 2148584.

J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, New York, 1988. MR 0938741.

C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math. 15 (1984), no. 8, 855–864. MR 0757963.

C. Jayaram and Tekir, von Neumann regular modules, Comm. Algebra 46 (2018), no. 5, 2205–2217. MR 3799203.

C. Jayaram, Tekir and S. Koç, Quasi regular modules and trivial extension, Hacet. J. Math. Stat. 50 (2021), no. 1, 120–134. MR 4227913.

J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. (3) 13 (1963), 31–50. MR 0143837.

S. Koç, On strongly $pi$-regular modules, Sakarya Univ. J. Sci. 24 (2020), no. 4, 675–684.

T.-K. Lee and Y. Zhou, Reduced modules, in Rings, Modules, Algebras, and Abelian Groups, 365–377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004. MR 2050725.

R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra 30 (2002), no. 2, 745–750. MR 1883021.

M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers, New York, 1962. MR 0155856.

P. F. Smith, Complete homomorphisms between module lattices, Int. Electron. J. Algebra 16 (2014), 16–31. MR 3239068.

J. Von Neumann, On regular rings. Proc. Natl. Acad. Sci. USA 22 (1936), no. 12, 707–713.

S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), no. 4, 273–278. MR 1879449.

Downloads

Published

2022-04-09

Issue

Section

Article