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ON BAER MODULES

CHILLUMUNTALA JAYARAM, ÜNSAL TEKIR, AND SUAT KOÇ

Abstract. A commutative ring R is said to be a Baer ring if for each a ∈ R,
ann(a) is generated by an idempotent element b ∈ R. In this paper, we extend
the notion of a Baer ring to modules in terms of weak idempotent elements
defined in a previous work by Jayaram and Tekir. Let R be a commutative ring
with a nonzero identity and let M be a unital R-module. M is said to be a Baer
module if for each m ∈ M there exists a weak idempotent element e ∈ R such
that annR(m)M = eM . Various examples and properties of Baer modules are
given. Also, we characterize a certain class of modules/submodules such as
von Neumann regular modules/prime submodules in terms of Baer modules.

1. Introduction

In this paper, we focus only on commutative rings with nonzero identity and
nonzero unital modules. Let R denote such a ring and let M denote such an
R-module. For each a ∈ R, the principal ideal generated by a will be designated
by (a). R is said to be a von Neumann regular (for short, VN-regular) ring if for
each a ∈ R there exists x ∈ R such that a = a2x [20]. Note that R is a VN-
regular ring if and only if for each a ∈ R, (a) = (e) for some idempotent element
e ∈ R. The concept of VN-regular ring and its generalizations have been widely
studied in many papers and have some applications to other areas such as graph
theory. See, for example, [13], [15] and [17]. In [14], Kist gave a generalization of
VN-regular rings, called Baer rings, as follows: a ring R is said to be a Baer ring
if for each a ∈ R, the annihilator ann(a) = {r ∈ R : ra = 0} of a is generated by
an idempotent element e ∈ R. It is easy to see that every VN-regular ring is also a
Baer ring, but the converse is not true in general. For instance, consider an integral
domain R that is not a field. Then clearly R is a Baer ring but not a VN-regular
ring. We note here that some authors studied Baer rings under different names
such as principally quasi Baer ring and P.P. ring. For details, one can consult [6],
[8] and [9].

2020 Mathematics Subject Classification. 16E50, 13A15.
Key words and phrases. Baer rings; regular rings; von Neumann regular modules; Baer mod-

ules; σ-submodules; m-submodules; Baer submodules.

109

https://doi.org/10.33044/revuma.1741
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Our aim in this article is to extend the notion of a Baer ring to modules, and to
investigate the relations between Baer modules and VN-regular modules. For the
sake of completeness, we now give some notions and notations which will be fre-
quently used in this paper. LetN be a submodule ofM , letK be a nonempty subset
of M and let J be a nonempty subset of R. The residuals of N by K and J are
defined as (N :R K) = {a ∈ R : aK ⊆ N} and (N :M J) = {m ∈M : Jm ⊆ N},
respectively. In particular, we use annR(N) to denote (0 :R N). M is called a
faithful module if annR(M) = (0). Also, M is said to be a multiplication mod-
ule if each submodule N of M has the form N = IM for some ideal I of R [5].
For more information about multiplication modules, we refer the reader to [1]
and [7]. M is called a torsion free module if the set of all torsion elements
T (M) = {m ∈ M : annR(m) 6= 0} = (0). Also, M is said to be a torsion
module if T (M) = M . Otherwise, we say that M is a non-torsion module, that is,
there exists m ∈ M such that annR(m) = 0. In [12], Jayaram and Tekir extended
the notion of an idempotent element in rings to modules in terms of weak idem-
potent elements and they studied VN-regular modules. An element e ∈ R is said
to be a weak idempotent element if em = e2m for each m ∈ M , or equivalently,
e− e2 ∈ annR(M). Also, M is said to be a VN-regular module if for each m ∈ M
we have Rm = aM = a2M for some a ∈ R [12]. The authors in [12, Lemma 3 and
Theorem 2] showed that a finitely generated R-module M is a VN-regular module
if and only if for each m ∈ M there exists a weak idempotent element e ∈ R such
that Rm = eM .

An R-module M is said to be a Baer module if for each m ∈ M there ex-
ists a weak idempotent element e ∈ R such that annR(m)M = eM . Among
various results in this paper, in Section 2 we give basic properties of Baer mod-
ules. In particular, we show that simple modules, torsion free modules, second
modules and finitely generated VN-regular modules are Baer modules (see Exam-
ple 2.2, Example 2.4, Example 2.5 and Proposition 2.8). Also, we characterize
Baer modules in terms of the Baer property of the factor ring R/ annR(M) (see
Theorem 2.14). Section 3 is dedicated to the study of σ-submodules, Baer sub-
modules and m-submodules. Let N be a submodule of M . It is said that N is a
σ-submodule of M if m ∈ N implies that (N :R M) + annR(m) = R. It is easy to
see that σ-submodules of the R-module R are the exactly pure ideals of R—recall
that an ideal I of R is said to be a pure ideal if for each a ∈ I there exists b ∈ I
such that a = ab. We give some characterizations of Baer modules and VN-regular
modules in terms of σ-submodules (see Theorem 3.6 and Theorem 3.8). Also,
we determine the conditions under which Baer modules and VN-regular modules
are equivalent (see Theorem 3.10). Moreover, in Proposition 3.13, we characterize
prime submodules in terms of Baer modules. Also, we study the prime submodules
of Baer modules (see Proposition 3.14). Finally, we determine when the lattice
σ(M) of all σ-submodules of M is a Boolean lattice (see Proposition 3.20). In the
last section, we investigate the Baer property of polynomial modules and power
series modules (see Corollary 4.8).
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2. Characterizations of Baer modules

Throughout this paper, R will always denote a commutative ring with nonzero
identity and M will denote a unital R-module.

Definition 2.1. An R-module M is said to be a Baer module if for each m ∈M ,
annR(m)M = eM for some weak idempotent e ∈ R.

Example 2.2. Every simple R-module M is a Baer module. If m ∈M , then either
Rm = 0 or Rm = M . This implies that annR(m) = R or annR(m) = annR(M).
Thus we have annR(m)M = 1M or annR(m)M = 0M . In particular, the Z-module
Zp is a Baer module for each prime number p.

Proposition 2.3. Let n > 1 be an integer. Then Zn is a Baer Z-module if and
only if n is square free.

Proof. (⇐): Assume that n is a square free integer. Then there exist distinct
prime numbers p1, p2, . . . , pr such that n = p1p2 · · · pr. Let 0 6= m ∈ Zn. If
gcd(m,n) = 1, then annZ(m) = p1p2 · · · prZ and so annZ(m)Zn = 0Zn. So suppose
that gcd(m,n) 6= 1. Then we may assume that m = kp1p2 · · · pt for some k ∈ Z
with gcd(k, n) = 1 and 1 ≤ t < r. Thus we have Zm = Zp1p2 · · · pt and so
annZ(m) = pt+1 · · · prZ, which implies that annZ(m)Zn = pt+1 · · · prZn. Now we
show that pt+1 · · · prZn = eZn for some weak idempotent e ∈ Z. Consider the
following system of equations:

pt+1 · · · prx ≡ 1 (mod p1)
pt+1 · · · prx ≡ 1 (mod p2)

. . .

pt+1 · · · prx ≡ 1 (mod pt).

By the Chinese remainder theorem, we can find a solution s ∈ Z for the above
system. Note that gcd(s, pi) = 1 for each 1 ≤ i ≤ t. Now, put pt+1 · · · prs = e.
Let ord(e) denote the order of e in the additive group of Zn. Then note that
ord(e) = ord(pt+1 · · · pr) and so pt+1 · · · prZn = eZn. Since e ≡ 1 (mod pi) for each
1 ≤ i ≤ t, we have e2 − e ∈ annZ(Zn), showing that e is weak idempotent. Thus
the Z-module Zn is a Baer module.

(⇒): Let n > 1 be a nonsquare free integer. Without loss of generality, we may
assume that n = pα1

1 · · · pαr
r for some prime numbers p1, p2, . . . , pr such that α1 ≥ 2

and αi ≥ 1 for each 2 ≤ i ≤ r. Put m = pα1−1
1 pα2

2 · · · p
αr
r . Then annZ(m) = p1Z

and so annZ(m)Zn = p1Zn. Assume that p1Zn = eZn for some weak idempotent
e ∈ Z. This implies that e = kp1 for some k ∈ Z. Since ord(e) = ord(p1), we
have gcd(e, n) = p1 and so gcd(k, pi) = 1 for every 1 ≤ i ≤ r. Since e − e2 =
kp1(1 − kp1) ≡ 0 (mod n), we conclude that p1 divides (1 − kp1), which is a
contradiction. Thus the Z-module Zn is not a Baer module. �
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Example 2.4. Every torsion free R-module M is a Baer module. Choose a nonzero
element m ∈M ; then it is clear that annR(m)M = 0 = 0M .

Recall from [21] that a nonzero submodule N of M is said to be a second sub-
module of M if, for each a ∈ R, either aN = N or aN = (0). In particular, an
R-module M is called a second module if it is a second submodule of itself.

Example 2.5. (i) Let annR(M) be a maximal ideal of R and let m ∈ M . Since
annR(M) ⊆ annR(m), we conclude that either annR(m) = annR(M) or annR(m) =
R. This implies that annR(m)M = 0M or annR(m)M = 1M . Hence M is a Baer
module. For instance, the Z-module Z5×Z5 is a Baer module, and also it is neither
a simple nor a torsion free module.

(ii) Every second R-module is a Baer module.

An R-module M is said to be a λ0-module if for each finite number of ideals
I1, I2, . . . , In we have

⋂n
i=1(IiM) =

[ ⋂n
i=1(Ii + annR(M))

]
M . By [7, Corollary

1.7], every multiplication module is an example of λ0-module. Also note that every
vector space is a λ0-module. Thus the class of λ0-modules properly contains the
class of multiplication modules.

Proposition 2.6. Let M be a λ0-module. The following statements are equivalent.
(i) M is a Baer module.

(ii) For any finitely generated submodule N of M , annR(N)M = eM for some
weak idempotent e ∈ R.

Proof. (i)⇒ (ii): Suppose that M is a Baer module and N is a finitely generated
submodule of M . Then we can write N = Rm1 + · · · + Rmn for some m1,m2,
. . . ,mn ∈ M . Since M is Baer, there exist weak idempotents ei ∈ R such that
annR(mi)M = eiM for each i = 1, 2, . . . , n. This implies that annR(N)M =(⋂n

i=1 annR(mi)
)
M . Since M is a λ0-module, we get( n⋂

i=1
annR(mi)

)
M =

n⋂
i=1

[annR(mi)M ] =
n⋂
i=1

eiM = e1e2 · · · enM

by [12, Lemma 1 (iii)]. Thus we have annR(N)M = eM , where e = e1e2 · · · en is a
weak idempotent element of R.

(ii)⇒ (i): It is clear. �

Recall that an R-module M is said to be a reduced module if, for a ∈ R and
m ∈ M , whenever am = 0 one has aM ∩ Rm = 0. It is clear that an R-module
M is a reduced module if and only if a2m = 0 implies that am = 0 for each a ∈ R
and m ∈M [16].

Proposition 2.7. Every finitely generated Baer module is a reduced module.

Proof. Suppose that M is a finitely generated Baer module and a2m = 0 for some
a ∈ R and m ∈M . Then a ∈ annR(am) and so aM ⊆ annR(am)M = eM for some
weak idempotent e ∈ R, since M is a Baer module. This yields am = em′ = e2m′

for some m′ ∈ M . Then we get am = e2m′ = e(em′) = e(am) and so (1 − e) ∈
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annR(am), which implies that (1 − e)M ⊆ annR(am)M ⊆ eM . Thus we have
eM = eM+(1−e)M = M and so annR(am)M = eM = M . Now we will show that
annR(am) = R. Suppose to the contrary that annR(am) = R. Then there exists
a maximal ideal Q containing annR(am). Thus we get annR(am)M = M ⊆ QM
and so QM = M . Since M is finitely generated, by [4, Corollary 2.5] we get
1− r ∈ annR(M) for some r ∈ Q. As annR(M) ⊆ Q, it follows that 1 ∈ Q, which
is a contradiction. Therefore annR(am) = R and hence am = 0. �

Proposition 2.8. Let M be a finitely generated R-module. If M is a VN-regular
module, then M is a Baer module.

Proof. Suppose that M is a finitely generated VN-regular module. Choose m ∈M .
Since M is finitely generated VN-regular, Rm = eM for some weak idempotent
e ∈ R. As e− e2 ∈ annR(M), we get (1− e)Rm = (1− e)eM = 0 and so (1− e) ∈
annR(Rm). This yields (1 − e)M ⊆ annR(m)M . To show the reverse inclusion,
take r ∈ annR(m) = annR(Rm). Then we have r(Rm) = r(eM) = (re)M = 0,
which implies that rem′ = 0 for each m′ ∈M . Let m′ ∈M . Then we conclude that
rm′ = rm′−rem′ = (1−e)(rm′) ∈ (1−e)M , which yields annR(m)M ⊆ (1−e)M .
Thus we have annR(m)M = (1 − e)M , where 1 − e is a weak idempotent in R.
Consequently, M is a Baer module. �

Definition 2.9. An R-module M is said to be an annihilator multiplication module
if for each m ∈M , annR(m) = annR(IM) for some finitely generated ideal I of R.

Note that every multiplication module is an annihilator multiplication module.
But the following example shows that an annihilator multiplication module is not
necessarily a multiplication module.

Example 2.10. (i) Every torsion free module is an annihilator multiplication mod-
ule. Let M be a torsion free R-module and let m ∈M . If m = 0, then annR(m) =
R = annR((0)M). Otherwise, we would have annR(m) = 0 = annR((1)M). Also
note that a torsion free module need not be a multiplication module. For instance,
the Z-module Z[i] (Gaussian integers) is an annihilator multiplication module but
not a multiplication module.

(ii) Every simple module is an annihilator multiplication module.

Lemma 2.11. Every finitely generated Baer module is an annihilator multiplica-
tion module.

Proof. Let M be a finitely generated Baer module and let m ∈ M . Then we have
annR(m)M = eM for some weak idempotent e ∈ R. This implies that eM + (1−
e)M = annR(m)M+(1−e)M = M . Now we will show that annR(m)+(1−e) = R.
Suppose to the contrary that annR(m) + (1− e) = R. Then there exists a maximal
ideal Q containing annR(m) + (1− e). Then we have QM = M . By [4, Corollary
2.5], we get (1−r)M = 0 for some r ∈ Q. Since 1−r ∈ annR(M) ⊆ Q, we get 1 ∈ Q,
which is a contradiction. Thus we have annR(m)+(1−e) = R. Then r′+(1−e)x = 1
for some r′ ∈ annR(m) and x ∈ R. This implies that e = er′ + e(1 − e)x and so
e ∈ annR(m)+annR(M) = annR(m). Then we conclude that (e) ⊆ annR(m). Now

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)
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take r′′ ∈ annR(m). Thus we have r′′(1− e)M ⊆ annR(m)(1− e)M = 0 and hence
r′′(1 − e) ∈ annR(M). This implies that r′′ = r′′e + r′′(1 − e) ∈ (e) + annR(M).
Thus we have annR(m) = (e)+annR(M). Since annR((1−e)M) = (e)+annR(M),
we get annR(m) = annR((1− e)M). Therefore, M is an annihilator multiplication
module. �

Proposition 2.12. Let M be a finitely generated R-module. If M is a Baer
module, then M is an annihilator multiplication module and R/ annR(M) is a
Baer ring.

Proof. Suppose that M is a finitely generated Baer module. Then by Lemma 2.11,
M is an annihilator multiplication module. Let a + annR(M) ∈ R/ annR(M). To
prove that R/ annR(M) is a Baer ring, we need to show that ann(a+ annR(M)) =
(e) for some idempotent e ∈ R/ annR(M). It is easy to see that ann(a+annR(M)) =
annR(aM)/ annR(M). Since M is finitely generated, it follows that M = Rm1 +
Rm2 + · · · + Rmn for some m1,m2, . . . ,mn ∈ M and so aM = R(am1) + · · · +
R(amn). This implies that annR(aM) =

⋂n
i=1 annR(ami). As M is a finitely gen-

erated Baer module, a similar argument as in the proof of Lemma 2.11 shows that
annR(ami) = (ei) + annR(M) for some weak idempotent ei ∈ R. This implies
that annR(ami)/ annR(M) = (ei + annR(M)). Then note that ei + annR(M) is an
idempotent of R/ annR(M) and so

annR(aM)/ annR(M) =
n⋂
i=1

annR(ami)/ annR(M)

=
n⋂
i=1

[annR(ami)/ annR(M)]

=
n⋂
i=1

[(ei + annR(M))]

= (e1e2 · · · en + annR(M)) = (e+ annR(M)),

where e = e1e2 · · · en and e+ annR(M) is an idempotent of R/ annR(M). �

Proposition 2.13. Let M be an annihilator multiplication R-module and let
R/ annR(M) be a Baer ring. Then M is a Baer module.

Proof. Let m ∈ M . Since M is an annihilator multiplication module, we have
annR(m) = annR(IM) for some finitely generated ideal I = (a1, a2, . . . , an) of R.
This implies that annR(m) = annR(a1M + · · ·+ anM) =

⋂n
i=1 annR(aiM). Since

R/ annR(M) is a Baer ring, for each ai ∈ R we have ann(ai + annR(M)) =
annR(aiM)/ annR(M) = (ei) + annR(M)/ annR(M) for some weak idempotent
ei ∈ R. This yields annR(aiM) = (ei) + annR(M). Then we have annR(m) =⋂n
i=1 annR(aiM) =

⋂n
i=1((ei) + annR(M)). Since

⋂n
i=1((ei) + annR(M)) = (e) +

annR(M), where e = e1e2 · · · en is a weak idempotent of R, we conclude that
annR(m)M = eM , which completes the proof. �
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In the following theorem, we give a characterization of Baer modules in terms
of Baer rings.

Theorem 2.14. (i) Let M be a finitely generated R-module. Then M is a Baer
module if and only if M is an annihilator multiplication module and R/ annR(M)
is a Baer ring.

(ii) Let M be a finitely generated multiplication R-module. Then M is a Baer
module if and only if R/ annR(M) is a Baer ring.

Proof. The proof follows from Proposition 2.12 and Proposition 2.13. �

Proposition 2.15. Suppose that Mi’s are finitely generated Ri-modules for all
i ∈ ∆. Then M =

∏
i∈∆Mi is a Baer R =

∏
i∈∆Ri-module if and only if Mi is a

Baer Ri-module for each i ∈ ∆.

Proof. Let
∏
i∈∆Mi be a Baer

∏
i∈∆Ri-module and let mj ∈Mj for some j ∈ ∆.

Consider the sequence

(ni)i∈∆ =
{
mj , i = j;
0, i 6= j.

Then note that annR((ni)i∈∆) =
∏
i∈∆ annRi

(ni), where annRi
(ni) = Ri for all

i 6= j. Since M is a Baer R-module, we have

annR((ni)i∈∆)M =
∏
i∈∆

annRi
(ni)

∏
i∈∆

Mi

= (ei)i∈∆
∏
i∈∆

Mi

=
∏
i∈∆

[eiMi]

for some weak idempotent (ei)i∈∆ of R. Also, it can be easily shown that ej is a
weak idempotent ofRj for all j ∈ ∆ and

∏
i∈∆[eiMi] =

∏
i∈∆ annRi

(ni)
∏
i∈∆Mi ⊆∏

i∈∆[annRi
(ni)Mi]. This implies that ejMj ⊆ annRj

(mj)Mj . Let r ∈ annRj
(mj)

and put

(ri)i∈∆ =
{
ri = r, i = j;
1, i 6= j.

Then (ri)i∈∆ ∈ annR((ni)i∈∆) and so

(ri)i∈∆M =
∏
i∈∆

[riMi] ⊆ annR((ni)i∈∆)M =
∏
i∈∆

[eiMi],

so we have rMj ⊆ ejMj , which implies that annRj (mj)Mj ⊆ ejMj . Thus we
have annRj

(mj)Mj = ejMj . Conversely, assume that Mi is a Baer Ri-module
for each i ∈ ∆. Let (mi)i∈∆ ∈

∏
i∈∆Mi. Then for each i ∈ ∆, annRi

(mi)Mi =
eiMi for some weak idempotent ei ∈ Ri. Since Mi is finitely generated, we have
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annRi(mi) = (ei) + annRi(Mi) and so (ei) ⊆ annRi(mi). Also note that

annR((mi)i∈∆)M =
∏
i∈∆

annRi
(mi)

∏
i∈∆

Mi

⊆
∏
i∈∆

[annRi(mi)Mi] =
∏
i∈∆

[eiMi]

= (ei)i∈∆
∏
i∈∆

Mi.

On the other hand, since (ei)i∈∆ ⊆
∏
i∈∆ annRi

(mi) = annR((mi)i∈∆), we have
that (ei)i∈∆

∏
i∈∆Mi ⊆ annR((mi)i∈∆)M . Thus, annR((mi)i∈∆)M = (ei)i∈∆M .

Since (ei)i∈∆ is a weak idempotent of R,
∏
i∈∆Mi is a Baer

∏
i∈∆Ri-module. �

Recall from [3] that a submodule N of M is said to be a pure submodule if
IM ∩N = IN for each ideal I of R.

Lemma 2.16. Every pure submodule of a Baer module is also a Baer module.

Proof. It is obvious. �

Corollary 2.17. Let {Mi}i∈∆ be a family of R-modules. Consider the following
cases:

(i)
∏
i∈∆Mi is a Baer R-module.

(ii)
⊕

i∈∆Mi is a Baer R-module.
(iii) Mi is a Baer R-module for each i ∈ ∆.

Then (i)⇒ (ii)⇒ (iii) always holds.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) follow from Lemma 2.16. �

The following example shows that in Corollary 2.17 the implication (iii)⇒ (i) is
not always true.

Example 2.18. Consider the simple Z-module Zpi
, where pi is the i-th prime

number. Then by Example 2.2, the Z-module Zpi
is a Baer module. Let M =∏

i Zpi
and let

(mi) =
{

1, i = 1;
0, i 6= 1.

Then it is easy to see that annZ((mi)) = 2Z and also annZ((mi))
∏
i Zpi = 2

∏
i Zpi .

Since M is a faithful Z-module, note that the only weak idempotents of Z are 0
and 1. As annZ((mi))M 6= 0M and annZ((mi))M 6= 1M , it follows that M is not
a Baer module.

Let M be an R-module and let S be a multiplicatively closed subset of R.
Then S−1M denotes the quotient module of M over the quotient ring S−1R. In
particular, if we take S = R − P for some prime ideal P of R, then we use MP

(resp. RP ) to denote S−1M (resp. S−1R).
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Proposition 2.19. If M is a Baer R-module, then S−1M is a Baer S−1R-module.

Proof. Let m
s ∈ S

−1M , where s ∈ S, m ∈M . It is easily seen that annS−1R(ms ) =
S−1 (annR(m)). Since M is a Baer module, we get annR(m)M = eM for some weak
idempotent e ∈ R. This implies that annS−1R(ms )S−1M = S−1 (annR(m))S−1M =
S−1[annR(m)M ] = S−1(eM) = e

1S
−1M . Since e is weak idempotent in R, e

1 is
weak idempotent in S−1R. Thus, S−1M is a Baer S−1R-module. �

Corollary 2.20. Let M be a Baer R-module. Then MP is a Baer RP -module for
each prime ideal P of R.

Let M be an R-module. RnM = R⊕M , the idealization of the R-module M , or
the trivial extension of R by M , is a commutative ring with componentwise addition
and multiplication (r,m)(s,m′) = (rs, rm′+sm) for each r, s ∈ R, m,m′ ∈M [18].
Also the set of all nilpotent elements in RnM is characterized as follows:√

0RnM =
√

0 nM

(see [2] and [10]). So it is easy to see that R nM is a reduced ring if and only if
R is a reduced ring and M = 0. In this case, RnM is isomorphic to R.

Corollary 2.21. Let M be an R-module. Then
(i) R n M is a VN-regular ring if and only if R is a VN-regular ring and

M = 0.
(ii) RnM is a Baer ring if and only if R is a Baer ring and M = 0.

Proof. Since VN-regular rings and Baer rings are reduced, the results follow from
the isomorphism Rn 0 ∼= R. �

3. σ-submodules, Baer submodules and m-submodules

In this section, we characterize Baer modules and VN-regular modules in terms
of Baer submodules and σ-submodules.

Definition 3.1. Let M be an R-module and let N be a submodule of M . Then
N is said to be a σ-submodule if m ∈ N implies that annR(m) + (N :R M) = R.
In particular, an ideal I of R is called a σ-ideal if I is a σ-submodule of the
R-module R.

Note that the σ-ideals of R are precisely the pure ideals of R. It is easy to
verify that the set of all σ-submodules is closed under arbitrary sum and finite
intersection.

Lemma 3.2. Every σ-submodule is a pure submodule.

Proof. Let I be an ideal of R and let N be a σ-submodule of M . Choose x ∈
IM ∩N . Then we can write x = r1m1 + · · ·+ rnmn for some ri ∈ I and mi ∈M .
Since N is a σ-submodule of M , we have annR(x) + (N :R M) = R. This implies
that 1 = y + s for some y ∈ annR(x) and s ∈ (N :R M). Then we conclude that
x = yx + sx = sx = r1(sm1) + · · · + rn(smn) ∈ IN . Thus IM ∩ N ⊆ IN . The
reverse inclusion always holds. �
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Example 3.3 (A pure submodule that is not a σ-submodule). Consider R = Z,
M = Z2 × Z and N = Z2 × 0. First note that (N :R M) = 0. Let m = (1, 0) ∈ N .
Then annR(m) + (N :R M) = 2Z 6= R and so N is not a σ-submodule. Let
r ∈ R. If r is even, then (r)M ∩ N = {(0, 0)} = (r)N . If r is odd, we have
(r)M ∩N = N = (r)N , that is, N is a pure submodule of M .

Let M be an R-module and let m ∈ M . Then one can easily see that m ∈
annM (annR(m)) and annR(annM (annR(m))) = annR(m).

Definition 3.4. Let M be an R-module. A submodule N of M is called a Baer
submodule if m ∈ N implies that annM (annR(m)) ⊆ N .

A Baer submodule of the R-module R is exactly a Baer ideal of R. The reader
may consult [11] for details on Baer ideals of commutative rings.

Lemma 3.5. Let M be an R-module. Then annM (annR(m)) is a Baer submodule
of M .

Proof. Let x ∈ annM (annR(m)) for some x ∈ M . Then we have annR(m) =
annR(annM (annR(m))) ⊆ annR(x) and so annM (annR(x)) ⊆ annM (annR(m)).
Thus annM (annR(m)) is a Baer submodule of M . �

We now characterize Baer modules in terms of Baer submodules and σ-submod-
ules.

Theorem 3.6. Let M be a finitely generated R-module. Then M is a Baer module
if and only if every Baer submodule is a σ-submodule.

Proof. Suppose that M is a Baer module and N is a Baer submodule of M . Let
m ∈ N . Since N is a Baer submodule, we have annM (annR(m)) ⊆ N . As M
is a Baer module, we have annR(m)M = eM for some weak idempotent e ∈ R.
Therefore annR(m) = (e) + annR(M). Also note that (1 − e) annR(m)m′ = 0
for all m′ ∈ M and so (1 − e)M ⊆ annM (annR(m)) ⊆ N . This implies that
(1− e) ⊆ (N :R M) and so (e) + annR(M) + (1− e) = R ⊆ annR(m) + (N :R M).
Thus we have annR(m) + (N :R M) = R, that is, N is a σ-submodule of M .
Now assume that every Baer submodule is a σ-submodule. For the converse, take
m ∈ M . By Lemma 3.5, annM (annR(m)) is a Baer submodule and also m ∈
annM (annR(m)). Then by assumption, annM (annR(m)) is a σ-submodule and
so annR(m) + (annM (annR(m)) :R M) = R. Since annR(m)(annM (annR(m)) :R
M) ⊆ annR(M), we have annR(m)M = eM for some weak idempotent e ∈ R by
[12, Lemma 2]. Thus M is a Baer module. �

Theorem 3.7. Let M be a finitely generated R-module. Then M is a Baer
R-module if and only if every submodule N of M is a Baer R-module.

Proof. The “only if” part is clear. Assume that M is a Baer module and N is a
proper submodule of M . Let m ∈ N . Then annR(m)M = eM for some weak
idempotent e ∈ R. Note that e ∈ R is also a weak idempotent with respect to the
R-module N . Since M is finitely generated, annR(m) = (e) + annR(M) and so
annR(m)N = eN , which completes the proof. �
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In the following theorem, we give a new characterization of VN-regular modules
in terms of σ-submodules.

Theorem 3.8. Let M be a finitely generated R-module. The following statements
are equivalent.

(i) Every proper submodule is a σ-submodule.
(ii) Every proper cyclic submodule is a σ-submodule.
(iii) M is a VN-regular module.

Proof. (i)⇒ (ii) is obvious.
(ii)⇒ (iii): Suppose (ii) holds. Let m ∈M . By assumption, we have annR(m)+

(Rm :R M) = R. Since annR(m)(Rm :R M) ⊆ annR(M), by [12, Lemma 2]
we have annR(m) = (e) + annR(M) and (Rm :R M) = (1 − e) + annR(M) for
some weak idempotent e ∈ R. So (1 − e)M = (Rm :R M)M ⊆ Rm. Also
m = 1.m = em + (1 − e)m = (1 − e)m as em = 0, which implies that Rm ⊆
(1− e)M . Therefore, Rm = (1− e)M and hence M is a VN-regular module.

(iii)⇒ (i): Suppose that M is a VN-regular module and N is a submodule of M .
Let m ∈ N . Then we have Rm = eM for some weak idempotent e ∈ R. Since
(1 − e)Rm = 0, we conclude that (1 − e) ⊆ annR(m). On the other hand, it is
clear that (e) ⊆ (Rm :R M) ⊆ (N :R M). Thus we have (1 − e) + (e) = R ⊆
annR(m) + (N :R M). Therefore, N is a σ-submodule of M . �

Lemma 3.9. Let M be an R-module and let N be a submodule of M . The following
statements are equivalent.

(i) N is a Baer submodule of M .
(ii) annR(m) ⊆ annR(m′), with m ∈ N , implies that m′ ∈ N .
(iii) N =

⋃
m∈N

annM (annR(m)).

Proof. (i)⇒ (ii): Suppose that N is a Baer submodule of M and annR(m) ⊆
annR(m′) with m ∈ N . Then we have

m′ ∈ annM (annR(m′)) ⊆ annM (annR(m)) ⊆ N,

since N is a Baer submodule.
(ii)⇒ (iii): Let x ∈ annM (annR(m)) for some m ∈ N . Then we have annR(m) ⊆

annR(x); by (ii) we get x ∈ N . Thus we have
⋃
m∈N annM (annR(m)) ⊆ N . The

reverse inclusion always holds.
(iii)⇒ (i): It is clear. �

By Proposition 2.8, we know that a finitely generated VN-regular module is
also a Baer module. But the converse is not true in general. For example, the
Z-module Z5 × Z5 is a Baer module which is not a VN-regular module. One
can ask the conditions under which a Baer module is a VN-regular module. The
following theorem gives an answer to this question.
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Theorem 3.10. Suppose that M is a finitely generated R-module. The following
statements are equivalent.

(i) M is a reduced multiplication module in which every submodule is a Baer
submodule.

(ii) M is a reduced multiplication module and for each m,m′ ∈M , annR(m) =
annR(m′) implies that Rm = Rm′.

(iii) M is a VN-regular module.
(iv) M is a Baer module and every submodule is a Baer submodule.

Proof. (i)⇒ (ii) follows from Lemma 3.9.
(ii)⇒ (iii): Suppose (ii) holds. By [12, Theorem 1 and Theorem 2], it is sufficient

to show that rM = r2M for each r ∈ R. Let r ∈ R. Since M is a reduced
module, we have annR(rm) = annR(r2m) for all m ∈ M . Then by (ii), we have
Rrm = Rr2m for all m ∈M and so we get rM = r2M , which completes the proof.

(iii)⇒ (i): Suppose (iii) holds. Clearly, M is a reduced multiplication module.
Let N be a submodule of M and let m ∈ N . Since M is VN-regular, Rm = eM for
some weak idempotent e ∈ R. This implies that annM (annR(m)) = eM = Rm ⊆
N . Thus N is a Baer submodule of M .

(iii)⇒ (iv) follows from (i) and Proposition 2.8.
(iv)⇒ (iii): Assume that M is a Baer module and every submodule of M is a

Baer submodule. Let m ∈ M . Since M is a Baer module, we have annR(m)M =
eM for some weak idempotent e ∈ R. Since M is finitely generated, we conclude
that annR(m) = (e) + annR(M). As Rm is a Baer submodule, we conclude that
Rm ⊆ annM (annR(m)) = (1− e)M ⊆ Rm and so Rm = e′M , where e′ = 1− e is
a weak idempotent element of R. Therefore, M is a VN-regular module. �

Lemma 3.11. Let M be an R-module. If N is a prime submodule of M , then
M/N is a Baer R-module.

Proof. Assume that N is a prime submodule of M . Let m ∈ M . Then it is easy
to see that annR(m + N) = (N :R m). If m ∈ N , then annR(m + N)(M/N) =
(N :R m)(M/N) = R(M/N) = 1(M/N). Assume that m /∈ N . Since N is a prime
submodule, we conclude that (N :R m) = (N :R M) and so annR(m+N)(M/N) =
(N :R m)(M/N) = (N :R M)(M/N) = 0M/N = 0(M/N). Thus M/N is a Baer
R-module. �

Example 3.12. The converse of Lemma 3.11 is not necessarily true. By Proposi-
tion 2.3, the Z-module Z6 is a Baer module. But 6Z is not a prime submodule of
the Z-module Z.

In the following Proposition 3.13, we characterize prime submodules of finitely
generated modules in terms of Baer modules.

Proposition 3.13. Let M be a finitely generated R-module and let N be a proper
submodule of M . The following statements are equivalent.

(i) N is a prime submodule of M .
(ii) (N :R M) is a prime ideal and M/N is a Baer R-module.
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Proof. (i)⇒ (ii) follows from Lemma 3.11.
(ii)⇒ (i): Suppose (ii) holds. Let rm ∈ N with m /∈ N . Since M/N is a

Baer R-module, annR(m + N)(M/N) = e(M/N) for some e ∈ R such that e −
e2 ∈ annR(M/N) = (N :R M). Since M/N is finitely generated and annR(m +
N)(M/N) = e(M/N), we get annR(m+N) = (e)+annR(M/N). This implies that
(N :R m) = (e) + (N :R M). Since e(1− e) ∈ (N :R M) and (N :R M) is a prime
ideal, we get either e ∈ (N :R M) or 1− e ∈ (N :R M). If 1− e ∈ (N :R M), then
1 ∈ (e) + (1 − e) ⊆ (e) + (N :R M) = (N :R m) and so m ∈ N , a contradiction.
Thus we get e ∈ (N :R M) and hence (e) + (N :R M) = (N :R M) = (N :R m),
which implies that r ∈ (N :R m) = (N :R M). �

Recall that a submodule N of M is said to be an essential (or large) submodule
if for each nonzero submodule N ′ of M , N ′ ∩N 6= 0; or, equivalently, N ′ ∩N = 0
implies N ′ = 0. Also a submodule N of M has a complement (or N is called a
complemented submodule) if there exists a submodule K of M such that N+K = M
and N ∩K = 0.

Proposition 3.14. Let M be a finitely generated multiplication Baer R-module.
Then every prime submodule is either essential or has a complement.

Proof. Suppose that N is a prime submodule of a finitely generated multiplication
Baer module M . Assume that N is not essential. Then there exists a nonzero
submodule N ′ of M such that N ∩ N ′ = 0. This implies that N ∩ aM = 0
for all a ∈ (N ′ :R M). Since N ′ 6= 0, there exists a′ ∈ (N ′ :R M) such that
a′M 6= 0. As N ∩ a′M = 0, we have a′M * N . This implies that a′m′ /∈ N
for some m′ ∈ M . Note that (N :R M) ∩ (a′M :R M) ⊆ annR(M) and so
(a′)(N :R M) ⊆ annR(M). Then we conclude that (N :R M)a′m′ = 0, which
implies that (N :R M) ⊆ annR(a′m′). Since M is a finitely generated Baer module,
we have annR(a′m′) = (e) + annR(M) for some weak idempotent e ∈ R. Thus we
have N = (N :R M)M ⊆ eM . Since e ∈ annR(a′m′), we have e(a′m′) = 0. As
N is a prime submodule, we have e ∈ (N :R M) and so N = eM . Hence N has a
complement by [12, Lemma 1]. �

Proposition 3.15. Let M be a finitely generated Baer module and let N be a
σ-submodule of M . Then M/N is a Baer R-module.

Proof. Suppose that N is a σ-submodule of M . Let m ∈ M . Now we will show
that annR(m + N)(M/N) = e(M/N) for some element e ∈ R such that e − e2 ∈
(N :R M). Since M is a Baer module, we have annR(m)M = eM for some weak
idempotent e of R. As M is finitely generated, it follows that annR(m) = (e) +
annR(M). Now we show that annR(m+N) = (N :R m) = (e)+(N :R M). It is easy
to see that (e)+(N :R M) ⊆ (N :R m). Let a ∈ (N :R m). Then we have am ∈ N .
Since N is a σ-submodule, we get annR(am) + (N :R M) = R and so x + y = 1
for some x ∈ annR(am) and y ∈ (N :R M). This implies that a = ax + ay. Since
axm = 0, we have ax ∈ annR(m) = (e)+annR(M) ⊆ (e)+(N :R M). Thus we have
a = ax+ ay ∈ (e) + (N :R M). Therefore annR(m+N) = (e) + (N :R M), which
implies that annR(m+N)(M/N) = e(M/N) + (N :R M)(M/N) = e(M/N). �
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Corollary 3.16. (i) Let M be a finitely generated Baer module and let N be a
Baer submodule of M . Then M/N is a Baer R-module.

(ii) Let M be a finitely generated Baer R-module and let P be a prime ideal of R
with (PM :R M) = P . If PM is a Baer submodule of M , then PM is a prime
submodule of M .

Proof. (i) follows from Theorem 3.6 and Proposition 3.15, while (ii) follows from
Theorem 3.6, Proposition 3.13 and Proposition 3.15. �

Definition 3.17. Let M be an R-module and let N be a submodule of M . Then
N is called an m-submodule if N = (N :R M)M .

Note that M is a multiplication module if and only if every submodule is an
m-submodule (see [7]). Clearly, the set of all m-submodules of M is closed under
arbitrary sum. If M is a λ0-module, then this set is closed under finite intersection.
For each a ∈ R, aM and IM (with I an ideal of R) are examples of m-submodules.
So if M is a λ0-module, then the set of all m-submodules forms a lattice.

Proposition 3.18. Let M be an R-module and let N be a submodule of M . Then
(i) If N is a σ-submodule, then N is an m-submodule.
(ii) If N is a finitely generated σ-submodule, then N is a complemented m-sub-

module.
(iii) If N is an m-submodule of M and (N :R M) is a σ-ideal of R, then N is

a σ-submodule of M .
(iv) Let M be a non-torsion module and let N be a σ-submodule of M . Then

N is an m-submodule of M and (N :R M) is a σ-ideal of R.
(v) Let M be a finitely generated Baer module which is also non-torsion. Then

N is a prime submodule and σ-submodule if and only if N is an m-submodule,
(N :R M) is a σ-ideal and (N :R M) is a prime ideal.

(vi) Let M be a Baer R-module. If N is an m-submodule of M , then N is a
Baer R-module.

(vii) Let M be a Baer R-module. If M is finitely generated and N is a Baer
submodule of M , then N is an m-submodule.

Proof. (i) Suppose that N is a σ-submodule. Let m ∈ N . Then annR(m) + (N :R
M) = R, which implies that a + b = 1 for some a ∈ annR(m) and b ∈ (N :R M).
Again m = am + bm = bm ∈ (N :R M)M . Therefore, N is contained in (N :R
M)M and hence N = (N :R M)M .

(ii) Let N be a finitely generated σ-submodule. Suppose N = Rm1+Rm2+· · ·+
Rmn. Then annR(mi)+(N :R M) = R for each i = 1, . . . , n. Let I =

n⋂
i=1

annR(mi).

Then, clearly we have I + (N :R M) = R. Also I(N :R M) is contained in
annR(M), since I(N :R M)M ⊆ IN = 0. By [12, Lemma 2], I = (e) + annR(M)
and (N :R M) = (1 − e) + annR(M) for some weak idempotent e of R. Note
that (N :R M)M = (1 − e)M is contained in N . Also, if n ∈ N then en = 0, so
n = (1 − e)n ∈ (1 − e)M and hence N = (1 − e)M . Therefore, by (i) and [12,
Lemma 1], N is a complemented m-submodule.
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(iii) Assume that N is an m-submodule and (N :R M) is a σ-ideal of R. Let
m ∈ N . Then m = a1m1 + · · · + anmn for some ai ∈ (N :R M) and mi ∈ M .
Since (N :R M) is a σ-ideal of R, ann(ai) + (N :R M) = R for each i = 1, 2, . . . , n.
Then

n⋂
i=1

ann(ai) + (N :R M) = R, which implies that annR(m) + (N :R M) = R.

Therefore, N is a σ-submodule.
(iv) Suppose that T (M) 6= M and N is a σ-submodule of M . Then by (i), N

is an m-submodule. Let a ∈ (N :R M). Since M 6= T (M), there exists m ∈ M
such that annR(m) = 0. As am ∈ N and N is a σ-submodule, we conclude that
annR(am) + (N :R M) = R. Thus ann(a) + (N :R M) = R. Therefore, (N :R M)
is a σ-ideal of R.

(v) This follows from Proposition 3.13, Proposition 3.15, (iii) and (iv).
(vi) Suppose that N is an m-submodule of M . Let m ∈ N . Since M is a Baer

module, annR(m)M = eM for some weak idempotent e ∈ R. This implies that
eN = e(N :R M)M = (N :R M)eM = (N :R M) annR(m)M = annR(m)(N :R
M)M = annR(m)N .

(vii) This follows from Theorem 3.6 and (i). �

Let M be an R-module. Then the set of all σ-submodules of M , denoted by
σ(M), is a lattice. Suppose that N1, N2 are σ-submodules of M . Then we define
their product as follows:

N1.N2 = (N1 :R M)(N2 :R M)M.

Since every σ-submodule is pure and anm-submodule, it is easily seen thatN1.N2 =
N1 ∩N2 for all N1, N2 ∈ σ(M).

Recall from [12] that an R-module M is said to be a colon distributive module
if (N + K :R M) = (N :R M) + (K :R M) for each submodule N,K of M .
We note that this notion was first studied by P. F. Smith in [19, Lemma 3.1] as
a µ-module. Note that by [19, Theorem 3.8], a finitely generated module M is
a colon distributive module if and only if it is a multiplication module. In [12,
Lemma 3 and Theorem 2], it is shown that a finitely generated R-module M is a
VN-regular module if and only if M is colon distributive and for each m ∈M there
exists a weak idempotent element e ∈ R such that Rm = eM .

Lemma 3.19. Let M be a colon distributive module. Then σ(M) is a distributive
lattice.

Proof. Let K,L and N be σ-submodules of M . Then L+N is a σ-submodule of M .
Thus K.(L + N) = (K :R M)(L + N :R M)M . Since M is a colon distributive
module, (L+N :R M) = (L :R M)+(N :R M), and so K.(L+N) = (K :R M)(L :R
M)M + (K :R M)(N :R M)M = K.L + K.N . Therefore (K + L) ∩ (K + N) =
(K + L).(K + N) = K.K + K.L + K.N + L.N ⊆ K + (L.N) = K + (L ∩ N), so
K + (L ∩N) = (K + L) ∩ (K +N). �
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The following proposition gives an equivalent condition for σ(M) to be a Boolean
lattice.
Proposition 3.20. Let M be a colon distributive module. If M is a finitely gen-
erated module, then σ(M) is a Boolean lattice if and only if every σ-submodule is
finitely generated.
Proof. Since M is a colon distributive module, by Lemma 3.19, σ(M) is a dis-
tributive lattice. Assume that every σ-submodule is finitely generated. Then by
Proposition 3.18, every σ-submodule is complemented and so σ(M) is a Boolean
lattice. Conversely, assume that M is finitely generated and σ(M) is a Boolean
lattice. Let N ∈ σ(M). Then N is a complemented submodule. Since M is colon
distributive, by [12, Lemma 3], N = eM for some weak idempotent e ∈ R. Since M
is finitely generated, M = Rm1 +Rm2 + · · ·+Rmn for some m1,m2, . . . ,mn ∈M .
Then N = eM = R(em1) + R(em2) + · · · + R(emn). Hence N is finitely gener-
ated. �

4. Extension of Baer modules

In this section, we study polynomial modules and power series modules over a
Baer module.
Proposition 4.1. Let M be a reduced λ0-module. If M is a Baer R-module, then
M [X] is a Baer R[X]-module.
Proof. Suppose M is a Baer R-module. Let m(x) = m0 + m1X + · · · + mnX

n ∈
M [X], where mi ∈M and 0 ≤ i ≤ n. Suppose that r(x) = r0 +r1X+ · · ·+rkX

k ∈
annR[X](m(x)). Then we have the following system of equations:

r0m0 = 0
r0m1 + r1m0 = 0

r0m2 + r1m1 + r2m0 = 0
. . .

rkmn = 0.

Since r0m0 = 0 = r0m1 + r1m0, we have r2
0m1 + r1(r0m0) = 0 and so r2

0m1 =
0. Since M is reduced, we have r0m1 = 0. A similar argument shows that
r0 ∈

⋂n
j=0 annR(mj). Similarly, we have ri ∈

⋂n
j=0 annR(mj) for each i = 1, 2,

. . . , k. This implies that annR[X](m(x)) =
[⋂n

j=0 annR(mj)
]
[X]. Now put I =⋂n

j=0 annR(mj). Since M is a λ0-module, we have IM =
⋂n
j=0[annR(mj)M ]. As

M is a Baer R-module, for all j = 0, 1, 2, . . . , n we get annR(mj)M = ejM for
some weak idempotent ej ∈ R. This implies that IM = (e0e1 · · · en)M = eM ,
where e = e0e1 · · · en is a weak idempotent of the R-module M . Thus we have

annR[X](m(x))M [X] = I[X]M [X] = (IM)[X]
= (eM)[X] = eM [X].

Since e−e2 ∈ annR(M), we have e−e2 ∈ annR[X](M [X]) and so the R[X]-module
M [X] is a Baer module. �
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Lemma 4.2. Let M be an R-module. Consider the R[X]-module M [X]. Then
(i) annR[X](M [X]) = (annR(M))[X].

(ii) If e(X) = e0 + e1X + e2X
2 + · · · + ekX

k ∈ R[X] is a weak idempotent of
the R[X]-module M [X], then e0 is a weak idempotent of the R-module M
and e1, e2, . . . , ek ∈ annR(M).

Proof. (i): It is clear.
(ii): Let e(X) be a weak idempotent of the R[X]-module M [X]. First note that

e2(X) = e2
0 + (2e0e1)X + (2e0e2 + e2

1)X2 + (2e0e3 + 2e1e2)X3 + (2e0e4 + 2e1e3 +
e2

2)X4 + · · · + e2
kX

2k and thus e(X) − e2(X) = (e0 − e2
0) + (e1 − 2e0e1)X + (e2 −

2e0e2−e2
1)X2 +(e3−2e0e3−2e1e2)X3 + · · ·−e2

kX
2k ∈ (annR(M))[X] by (i). This

implies that e0−e2
0 ∈ annR(M) and so e0 is a weak idempotent of the R-module M .

Since e1− 2e0e1 ∈ annR(M), we get e0e1− 2e2
0e1 = e1(e0− e2

0)− e2
0e1 ∈ annR(M);

thus we have e2
0e1 ∈ annR(M) and this yields e0e1 ∈ annR(M). Then we have

e1 ∈ annR(M). Similarly, we get e2, . . . , ek ∈ annR(M). �

Proposition 4.3. If M [X] is a Baer R[X]-module, then M is a Baer R-module.

Proof. Suppose that M [X] is a Baer R[X]-module and m ∈ M . First note that
annR[X](m) = (annR(m))[X]. Since M [X] is a Baer R[X]-module, we have that
annR[X](m)M [X] = e(X)M [X] for some weak idempotent e(X) = e0 + e1X +
e2X

2 + · · · + ekX
k ∈ R[X]. By Lemma 4.2 (ii), we get e(X)M [X] = e0M [X] =

(e0M)[X]. Thus we get
annR[X](m)M [X] = (annR(m))[X]M [X]

= (annR(m)M)[X]
= (e0M)[X].

Then we have annR(m)M = e0M . Hence M is a Baer R-module. �

Theorem 4.4. (i) Let M be a reduced λ0-module. Then M is a Baer R-module if
and only if M [X] is a Baer R[X]-module.

(ii) Let M be a finitely generated λ0-module. Then M is a Baer R-module if
and only if M [X] is a Baer R[X]-module.

Proof. The proof of (i) follows from Proposition 4.1 and Proposition 4.3. The proof
of (ii) follows from Proposition 2.7, Proposition 4.1 and Proposition 4.3. �

Let M [[X]] denote the set of all formal power series in X with coefficients in M .
Then M [[X]] becomes an R[[X]]-module with scalar multiplication( ∞∑

i=0
aiX

i

)( ∞∑
i=0

miX
i

)
=
∞∑
i=0

( i∑
j=0

ajmi−j

)
Xi,

where
∞∑
i=0

aiX
i ∈ R[[X]] and

∞∑
i=0

miX
i ∈M [[X]]. To prove when the R[[X]]-module

M [[X]] is a Baer module, first we give the following result. We omit the proof,
since it is similar to that of Lemma 4.2.

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)
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Lemma 4.5. Let M be an R-module. Then the following statements are satisfied
for the R[[X]]-module M [[X]]:

(i) annR[[X]](M [[X]]) = (annR(M))[[X]].
(ii) If e(X) =

∑∞
i=0 eiX

i ∈ R[[X]] is a weak idempotent of the R[[X]]-module
M [[X]], then e0 is a weak idempotent of the R-module M and ei ∈ annR(M)
for all i 6= 0. In this case, e(X)M [[X]] = (e0M)[[X]].

Proposition 4.6. Let M be an R-module. If M [[X]] is a Baer R[[X]]-module,
then M is a Baer R-module.

Proof. Suppose that M [[X]] is a Baer R[[X]]-module. Let m ∈ M . First note
that annR[[X]](m) = (annR(m))[[X]]. Since M [[X]] is a Baer R[[X]]-module, we
have (annR(m))[[X]]M [[X]] = e(X)M [[X]] for some weak idempotent e(X) ∈
R[[X]], where e(X) =

∑∞
i=0 eiX

i. By Lemma 4.5, (annR(m))[[X]]M [[X]] =
(e0M)[[X]]. Since annR(m)[[X]]M [[X]] ⊆ (annR(m)M)[[X]], we conclude that
e0M ⊆ annR(m)M . Let m′ ∈ annR(m)M . Then m′ = r1m1+r2m2+· · ·+rnmn for
some ri ∈ annR(m) and mi ∈M . For any ri ∈ annR(m), we have rimi = (ri+0X+
0X2+· · ·+0Xn+· · · )(mi+0X+0X2+· · ·+0Xn+· · · ) ∈ (annR(m))[[X]]M [[X]] =
(e0M)[[X]]. Therefore rimi ∈ e0M and so m′ = r1m1 + r2m2 + · · ·+ rnmn ∈ e0M .
This implies that annR(m)M = e0M and so M is a Baer R-module. �

Proposition 4.7. Suppose that M is a finitely generated Baer module and that
R/ annR(M) has only finitely many idempotent elements. Then M [[X]] is a Baer
R[[X]]-module.

Proof. Let M be a finitely generated Baer module and assume that R/ annR(M)
has only finitely many idempotent elements. Then M is a reduced module by
Proposition 2.7. Let m(x) =

∑∞
i=0miX

i ∈M [[X]]. Then note that

annR[[X]](m(x)) =
[ ∞⋂
i=0

annR(mi)
]
[[X]].

Since M is a finitely generated Baer module and R/ annR(M) has finitely many
idempotents, we have that annR(mi) = (ei) + annR(M) for some weak idempotent
ei ∈ R, where 1 ≤ i ≤ n. Then

⋂∞
i=0 annR(mi) = (e) + annR(M), where e =

e1e2 · · · en is a weak idempotent element of R. This implies that

annR[[X]](m(x))M [[X]] = ((e) + annR(M))[[X]]M [[X]]
= (eM)[[X]].

Put e(X) = e+ 0X + 0X2 + · · ·+ 0Xn + · · · . Then e(X) is a weak idempotent of
the R[[X]]-module M [[X]] and also annR[[X]](m(x))M [[X]] = e(X)M [[X]]. Thus
M [[X]] is a Baer R[[X]]-module. �
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As a consequence of Theorem 4.4, Proposition 4.6 and Proposition 4.7, we have
the following corollary.

Corollary 4.8. Let M be a finitely generated λ0-module and let R/ annR(M) have
only finitely many idempotent elements. The following statements are equivalent.

(i) M is a Baer R-module.
(ii) M [X] is a Baer R[X]-module.
(iii) M [[X]] is a Baer R[[X]]-module.
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