BILINEAR DIFFERENTIAL OPERATORS AND $\mathfrak{o s p}(1 \mid 2)$-RELATIVE COHOMOLOGY ON $\mathbb{R}^{1 \mid 1}$

ABDERRAOUF GHALLABI AND MEHER ABDAOUI

Abstract

We consider the $1 \mid 1$-dimensional real superspace $\mathbb{R}^{1 \mid 1}$ endowed with its standard contact structure defined by the 1-form α. The conformal Lie superalgebra $\mathcal{K}(1)$ acts on $\mathbb{R}^{1 \mid 1}$ as the Lie superalgebra of contact vector fields; it contains the Möbius superalgebra $\mathfrak{o s p}(1 \mid 2)$. We classify $\mathfrak{o s p}(1 \mid 2)$-invariant superskew-symmetric binary differential operators from $\mathcal{K}(1) \wedge \mathcal{K}(1)$ to $\mathfrak{D}_{\lambda, \mu ; \nu}$ vanishing on $\mathfrak{o s p}(1 \mid 2)$, where $\mathfrak{D}_{\lambda, \mu ; \nu}$ is the superspace of bilinear differential operators between the superspaces of weighted densities. This result allows us to compute the second differential $\mathfrak{o s p}(1 \mid 2)$-relative cohomology of $\mathcal{K}(1)$ with coefficients in $\mathfrak{D}_{\lambda, \mu ; \nu}$.

1. Introduction

The space of weighted densities with weight λ (or λ-densities) on \mathbb{R}, denoted by

$$
\mathcal{F}_{\lambda}=\left\{f(d x)^{\lambda} \mid f \in C^{\infty}(\mathbb{R})\right\}, \quad \lambda \in \mathbb{R}
$$

is the space of sections of the line bundle $\left(T^{*} \mathbb{R}\right)^{\otimes^{\lambda}}$ for positive integer λ. The Lie algebra $\operatorname{Vect}(\mathbb{R})$ of vector fields $X_{F}=F \frac{d}{d x}$ on \mathbb{R}, where $F \in C^{\infty}(\mathbb{R})$, acts by the Lie derivative. Alternatively, this action can be written as

$$
X_{F} \cdot\left(f d x^{\lambda}\right)=L_{X_{F}}^{\lambda}(f)(d x)^{\lambda}, \quad \text { with } L_{X_{F}}^{\lambda}(f)=F f^{\prime}+\lambda F^{\prime} f
$$

where f^{\prime} and F^{\prime} are, respectively, $\frac{d f}{d x}$ and $\frac{d F}{d x}$. For $(\lambda, \mu, \nu) \in \mathbb{R}^{3}$, each bilinear differential operator A from $C^{\infty}(\mathbb{R}) \otimes C^{\infty}(\mathbb{R})$ to $C^{\infty}(\mathbb{R})$ gives thus rise to a morphism from $\mathcal{F}_{\lambda} \otimes \mathcal{F}_{\mu}$ to \mathcal{F}_{ν} defined by $f d x^{\lambda} \otimes g d x^{\mu} \mapsto A(f \otimes g) d x^{\nu}$. The Lie algebra $\operatorname{Vect}(\mathbb{R})$ acts on the space $\mathrm{D}_{\lambda, \mu ; \nu}$ of these differential operators by

$$
X_{F} \cdot A=L_{X_{F}}^{\nu} \circ A-A \circ L_{X_{F}}^{(\lambda, \mu)}
$$

where $L_{X_{F}}^{(\lambda, \mu)}$ is the Lie derivative on $\mathcal{F}_{\lambda} \otimes \mathcal{F}_{\mu}$ defined by the Leibniz rule

$$
L_{X_{F}}^{(\lambda, \mu)}(f \otimes g)=L_{X_{F}}^{\lambda}(f) \otimes g+f \otimes L_{X_{F}}^{\mu}(g)
$$

If we restrict ourselves to the Lie subalgebra of $\operatorname{Vect}(\mathbb{R})$ generated by $\left\{\frac{d}{d x}, x \frac{d}{d x}\right.$, $\left.x^{2} \frac{d}{d x}\right\}$, isomorphic to $\mathfrak{s l}(2)$, we get a family of infinite-dimensional $\mathfrak{s l}(2)$-modules,

[^0]still denoted by $\mathrm{D}_{\lambda, \mu ; \nu}$. Bouarroudj [6] computed $\mathrm{H}_{\text {diff }}^{2}\left(\operatorname{Vect}(\mathbb{R}), \mathfrak{s l}(2) ; \mathrm{D}_{\lambda, \mu}\right)$, where $\mathrm{H}_{\text {diff }}^{i}$ denotes the differential cohomology; that is, only cochains given by differential operators are considered. These spaces appear naturally in the problem of describing the $\mathfrak{s l}(2)$-trivial deformations of the $\operatorname{Vect}(\mathbb{R})$-module $\mathcal{S}_{\mu-\lambda}=\bigoplus_{k=0}^{\infty} \mathcal{F}_{\mu-\lambda-k}$, the space of symbols of differential operators (for example, see [1, 12]).

In this paper we study the simplest super analog of the problem solved in [6, namely, we consider the superspace $\mathbb{R}^{1 \mid 1}$ equipped with the contact structure determined by a 1 -form α, and the Lie superalgebra $\mathcal{K}(1)$ of contact vector fields on $\mathbb{R}^{1 \mid 1}$. We introduce the $\mathcal{K}(1)$-module \mathfrak{F}_{λ} of λ-densities on $\mathbb{R}^{1 \mid 1}$ and the $\mathcal{K}(1)$-module of bilinear differential operators, $\mathfrak{D}_{\lambda, \mu ; \nu}=\operatorname{Hom}_{\text {diff }}\left(\mathfrak{F}_{\lambda} \otimes \mathfrak{F}_{\mu}, \mathfrak{F}_{\nu}\right)$, which are super analogues of the spaces \mathcal{F}_{λ} and $\mathrm{D}_{\lambda, \mu ; \nu}$, respectively. The Lie superalgebra $\mathfrak{o s p}(1 \mid 2)$, a super analogue of $\mathfrak{s l}(2)$, can be realized as a subalgebra of $\mathcal{K}(1)$. We classify all $\mathfrak{o s p}(1 \mid 2)$-invariant bilinear differential operators from $\mathcal{K}(1)$ to $\mathfrak{D}_{\lambda, \mu ; \nu}$. We use the result to compute $\mathrm{H}_{\text {diff }}^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$. We show that nonzero cohomology $\mathrm{H}_{\text {diff }}^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$ only appears for resonant values of weights that satisfy $\nu-\mu-\lambda \in \frac{1}{2} \mathbb{N}+3$. These spaces allow us to classify the nontrivial projectively invariant extensions of the Lie superalgebra $\mathcal{K}(1)$ by the module $\mathfrak{D}_{\lambda, \mu ; \nu}$.

2. Definitions and notations

Recall that the superalgebra $C^{\infty}\left(\mathbb{R}^{1 \mid 1}\right)$ of smooth function on the superspace $\mathbb{R}^{1 \mid 1}$ consists of elements of the form

$$
F(x, \theta)=f_{0}(x)+f_{1}(x) \theta,
$$

where $f_{0}, f_{1} \in C^{\infty}(\mathbb{R})$, and where x is the even variable and θ is the odd variable $\left(\theta^{2}=0\right)$. Let $|F|$ be the parity of a homogeneous function F. Let

$$
\operatorname{Vect}\left(\mathbb{R}^{1 \mid 1}\right)=\left\{F_{0} \partial_{x}+F_{1} \partial_{\theta} \mid F_{i} \in C^{\infty}\left(\mathbb{R}^{1 \mid 1}\right)\right\}
$$

where $\partial_{\theta}=\frac{\partial}{\partial \theta}$ and $\partial_{x}=\frac{\partial}{\partial x}$. Let $\mathcal{K}(1)$ be the Lie superalgebra of contact vector fields on $\mathbb{R}^{1 \mid 1}$:

$$
\mathcal{K}(1)=\left\{X \in \operatorname{Vect}\left(\mathbb{R}^{1 \mid 1}\right) \mid \text { there exists } F \in C^{\infty}\left(\mathbb{R}^{1 \mid 1}\right) \text { such that } \mathfrak{L}_{X}(\alpha)=F \alpha\right\}
$$ where \mathfrak{L}_{X} is the Lie derivative along the vector field X and

$$
\alpha=d x+\theta d \theta
$$

Any contact vector field on $\mathbb{R}^{1 \mid 1}$ can be expressed as

$$
X_{F}=F \partial_{x}-\frac{1}{2}(-1)^{|F|} \bar{\eta}(F) \bar{\eta}
$$

where $F \in C^{\infty}\left(\mathbb{R}^{1 \mid 1}\right)$ and $\bar{\eta}=\partial_{\theta}-\theta \partial_{x}$. The contact bracket is defined by $\left[X_{F}, X_{G}\right]=X_{\{F, G\}}:$

$$
\{F, G\}=F G^{\prime}-F^{\prime} G-\frac{1}{2}(-1)^{|F|} \bar{\eta}(F) \cdot \bar{\eta}(G)
$$

The orthosymplectic Lie superalgebra $\mathfrak{o s p}(1 \mid 2)$ can be realized as a subalgebra of $\mathcal{K}(1)$:

$$
\mathfrak{o s p}(1 \mid 2)=\operatorname{Span}\left(X_{1}, X_{x}, X_{x^{2}}, X_{x \theta}, X_{\theta}\right)
$$

The space of even elements is isomorphic to $\mathfrak{s l}(2)$, while the space of odd elements is two-dimensional:

$$
(\mathfrak{o s p}(1 \mid 1))_{\overline{1}}=\operatorname{Span}\left(X_{x \theta}, X_{\theta}\right) .
$$

We define the space of λ-densities as

$$
\mathfrak{F}_{\lambda}=\left\{F(x, \theta) \alpha^{\lambda} \mid F(x, \theta) \in C^{\infty}\left(\mathbb{R}^{1 \mid 1}\right)\right\} .
$$

As a vector space, \mathfrak{F}_{λ} is isomorphic to $C^{\infty}\left(\mathbb{R}^{111}\right)$, but the Lie derivative of the density $G \alpha^{\lambda}$ along the vector field X_{F} in $\mathcal{K}(1)$ is now

$$
\begin{equation*}
\mathfrak{L}_{X_{F}}\left(G \alpha^{\lambda}\right)=\mathfrak{L}_{X_{F}}^{\lambda}(G) \alpha^{\lambda}, \quad \text { with } \mathfrak{L}_{X_{F}}^{\lambda}=X_{F}+\lambda F^{\prime}, \lambda \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

A differential operator on $\mathbb{R}^{1 \mid 1}$ is an operator on $C^{\infty}\left(\mathbb{R}^{1 \mid 1}\right)$ of the form

$$
A=\sum_{k=0}^{M} \sum_{\varepsilon} a_{k, \varepsilon}(x, \theta) \partial_{x}^{k} \partial_{\theta}^{\varepsilon}, \quad \varepsilon=0,1, M \in \mathbb{N}
$$

Of course any differential operator defines a linear mapping $F \alpha^{\lambda} \mapsto A(F) \alpha^{\mu}$ from \mathfrak{F}_{λ} to \mathfrak{F}_{μ} for any $\lambda, \mu \in \mathbb{R}$, thus the space of differential operators becomes a $\mathcal{K}(1)$-module denoted by $\mathfrak{D}_{\lambda, \mu}$ for the natural action

$$
X_{F} \cdot A=\mathfrak{L}_{X_{F}}^{\mu} \circ A-(-1)^{|A||F|} A \circ \mathfrak{L}_{X_{F}}^{\lambda}
$$

Similarly, we consider a family of $\mathcal{K}(1)$-modules on the space $\mathfrak{D}_{\lambda, \mu ; \nu}$ of bilinear differential operators $A: \mathfrak{F}_{\lambda} \otimes \mathfrak{F}_{\mu} \rightarrow \mathfrak{F}_{\nu}$ with the $\mathcal{K}(1)$-action

$$
X_{F} \cdot A=\mathfrak{L}_{X_{F}}^{\nu} \circ A-(-1)^{|A||F|} A \circ \mathfrak{L}_{X_{F}}^{(\lambda, \mu)}
$$

where $\mathfrak{L}_{X_{F}}^{(\lambda, \mu)}$ is the Lie derivative on $\mathfrak{F}_{\lambda} \otimes \mathfrak{F}_{\mu}$ defined by the Leibniz rule

$$
\mathfrak{L}_{X_{F}}^{(\lambda, \mu)}(H \otimes G)=\mathfrak{L}_{X_{F}}^{\lambda}(H) \otimes G+(-1)^{|F||H|} H \otimes \mathfrak{L}_{X_{F}}^{\mu}(G) .
$$

Since $\bar{\eta}^{2}=-\partial_{x}$ and $\partial_{\theta}=\bar{\eta}-\theta \bar{\eta}^{2}$, any differential operator $A \in \mathfrak{D}_{\lambda, \mu}$ can be expressed in the form

$$
\begin{equation*}
A\left(F \alpha^{\lambda}\right)=\sum_{i=0}^{\ell} a_{i} \bar{\eta}^{i}(F) \alpha^{\mu} \tag{2.2}
\end{equation*}
$$

where the coefficients $a_{i} \in C^{\infty}\left(\mathbb{R}^{1 \mid 1}\right)$ and $\ell \in \mathbb{N}$.
3. The $\mathfrak{o s p}(1 \mid 2)$-Relative cohomology of $\mathcal{K}(1)$ ACting on $\mathfrak{D}_{\lambda, \mu ; \nu}$

Let us first recall some fundamental concepts from cohomology theory (see, e.g., [8, 9, 10]).
3.1. Lie superalgebra cohomology. Let $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be a Lie superalgebra acting on a superspace $V=V_{\overline{0}} \oplus V_{\overline{1}}$ and let \mathfrak{h} be a subalgebra of \mathfrak{g}. (If \mathfrak{h} is omitted, it is assumed to be $\{0\}$.) The space of \mathfrak{h}-relative n-cochains of \mathfrak{g} with values in V is

$$
C^{n}(\mathfrak{g}, \mathfrak{h} ; V):=\operatorname{Hom}_{\mathfrak{h}}\left(\Lambda^{n}(\mathfrak{g} / \mathfrak{h}) ; V\right)
$$

The coboundary operator $\delta_{n}: C^{n}(\mathfrak{g}, \mathfrak{h} ; V) \rightarrow C^{n+1}(\mathfrak{g}, \mathfrak{h} ; V)$ is an even map satisfying $\delta_{n} \circ \delta_{n-1}=0$ (see, for instance, [10]): for $\phi \in C^{n}(\mathfrak{g}, \mathfrak{h} ; V)$,

$$
\begin{aligned}
& \left(\delta_{n} \phi\right)\left(g_{0}, \ldots, g_{n}\right)=\sum_{i=0}^{n}(-1)^{i}(-1)^{\left|g_{i}\right|\left(|\phi|+\left|g_{0}\right|+\cdots+\left|g_{i-1}\right|\right)} g_{i} \phi\left(g_{0}, \ldots, \hat{i}, \ldots, g_{n}\right) \\
& +\sum_{0 \leq i<j \leq n}(-1)^{i+j}(-1)^{\left|g_{i}\right|\left(\left|g_{0}\right|+\cdots+\left|g_{i-1}\right|\right)}(-1)^{\left|g_{j}\right|\left(\left|g_{0}\right|+\cdots+\hat{i}+\cdots+\left|g_{j-1}\right|\right)} \\
& \quad \times \phi\left(\left[g_{i}, g_{j}\right], g_{0}, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, g_{n}\right)
\end{aligned}
$$

The kernel of δ_{n}, denoted by $Z^{n}(\mathfrak{g}, \mathfrak{h} ; V)$, is the space of \mathfrak{h}-relative n-cocycles; among them, the elements in the range of δ_{n-1} are called \mathfrak{h}-relative n-coboundaries. We denote by $B^{n}(\mathfrak{g}, \mathfrak{h} ; V)$ the space of n-coboundaries.

By definition, the n-th \mathfrak{h}-relative cohomology space is the quotient space

$$
\mathrm{H}^{n}(\mathfrak{g}, \mathfrak{h} ; V)=Z^{n}(\mathfrak{g}, \mathfrak{h} ; V) / B^{n}(\mathfrak{g}, \mathfrak{h} ; V)
$$

We can also define a \mathfrak{g}-action π on $C^{n}(\mathfrak{g}, V)$ by setting, for any $g \in \mathfrak{g}$,

$$
\begin{aligned}
& (\pi(g) \phi)\left(g_{1}, \ldots, g_{n}\right) \\
& \quad=g \phi\left(g_{1}, \ldots, g_{n}\right)-\sum_{i=1}^{n}(-1)^{|g|\left(|\phi|+\left|g_{1}\right|+\cdots+\left|g_{i-1}\right|\right)} g_{i} \phi\left(g_{1}, \ldots,\left[g, g_{i}\right], \ldots, g_{n}\right),
\end{aligned}
$$

and a contraction operator $\iota(g)$ from C^{n} to C^{n-1} by

$$
(\iota(g) \phi)\left(g_{1}, \ldots, g_{n-1}\right)=(-1)^{|g||\phi|} \phi\left(g, g_{1}, \ldots, g_{n-1}\right) .
$$

A direct computation gives the classical formula

$$
\pi(g) \phi=\left(\delta_{n-1} \circ \iota(g)+\iota(g) \circ \delta_{n}\right) \phi
$$

and thus $\delta_{n}(\pi(g) \phi)=\pi(g)\left(\delta_{n} \phi\right)$; that is, δ_{n} is a \mathfrak{g}-map. Note that $C^{n}(\mathfrak{g}, \mathfrak{h} ; V)$ may be viewed as the subspace of $C^{n}(\mathfrak{g}, V)$ annihilated by both $\iota(\mathfrak{h})$ and $\pi(\mathfrak{h})$. We will only need the formula of δ_{n} (which will be simply denoted by δ) in degrees 0,1 and 2: for $v \in C^{0}(\mathfrak{g}, \mathfrak{h} ; V)=V^{\mathfrak{h}}, \delta v(g):=(-1)^{|g||v|} g \cdot v$, where

$$
V^{\mathfrak{h}}=\{v \in V \mid h \cdot v=0 \text { for all } h \in \mathfrak{h}\} .
$$

3.2. $\mathfrak{o s p}(1 \mid 2)$-invariant binary differential operators. The following steps to compute the cohomology have intensively been used in [2, 4, 5, 6, 7, 11]. First, we classify $\mathfrak{o s p}(1 \mid 2)$-invariant differential operators, then we isolate among them those that are 2-cocycles. To do that, we need the following lemma.

Lemma 3.1. Any 2-cocycle vanishing on the subalgebra $\mathfrak{o s p}(1 \mid 2)$ of $\mathcal{K}(1)$ is $\mathfrak{o s p}(1 \mid 2)$ invariant.

Proof. For $X \in \mathfrak{o s p}(1 \mid 2)$, the 2-cocycle condition reads:

$$
c([X, Y], Z)-(-1)^{|Y||Z|} c([X, Z], Y)=(-1)^{|X||c|} \mathfrak{L}_{X}^{\lambda_{X}, \mu} c(Y, Z)
$$

for every $Y, Z \in \mathcal{K}(1)$. This relation is nothing but the $\mathfrak{o s p}(1 \mid 2)$-invariance property of the bilinear map c.

As our 2-cocycles vanish on $\mathfrak{o s p}(1 \mid 2)$, we will investigate $\mathfrak{o s p}(1 \mid 2)$-invariant super-skew-symmetric binary differential operators that vanish on $\mathfrak{o s p}(1 \mid 2)$. Our first main result is the following theorem.

Theorem 3.2. The space of superskew-symmetric bilinear differential operators $\mathcal{K}(1) \wedge \mathcal{K}(1) \rightarrow \mathfrak{D}_{\lambda, \mu ; \nu}$ which are $\mathfrak{o s p}(1 \mid 2)$-invariant and vanish on $\mathfrak{o s p}(1 \mid 2)$ is purely even if $\nu-\mu-\lambda$ is integer and is purely odd if $\nu-\mu-\lambda$ is semi-integer; moreover, this space is:
(i) $(p-2)(4 p-9)$-dimensional if $(\nu-\mu-\lambda)=2 p-2$ and $p \geq 3$;
(ii) $\left(4 p^{2}-13 p+11\right)$-dimensional if $(\nu-\mu-\lambda)=2 p-1$ and $p \geq 2$;
(iii) $(p-2)(4 p-7)$-dimensional if $(\nu-\mu-\lambda)=2 p-\frac{3}{2}$ and $p \geq 3$;
(iv) $\left(4 p^{2}-11 p+8\right)$-dimensional if $(\nu-\mu-\lambda)=2 p-\frac{1}{2}$ and $p \geq 2$;
(v) zero-dimensional otherwise.

Proof. First, it is easy to see that, for the adjoint action, the Lie superalgebra $\mathcal{K}(1)$ is isomorphic to \mathfrak{F}_{-1}. So, any such a differential operator can be considered as a 4 -ary differential operator $c: \mathfrak{F}_{-1} \otimes \mathfrak{F}_{-1} \otimes \mathfrak{F}_{\lambda} \otimes \mathfrak{F}_{\mu} \rightarrow \mathfrak{F}_{\nu}$. Thus, by (2.2), we can see that the operator c has the form

$$
\begin{aligned}
c\left(X_{F}, X_{G}, \phi, \psi\right)= & \sum_{\substack{\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) \\
0 \leq k_{1}, k_{2}, k_{3}, k_{4} \leq M}} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, k_{4}}(x, \theta,|F|,|G|,|\phi|,|\psi|) \\
& \times \bar{\eta}^{\varepsilon_{1}}\left(F^{\left(k_{1}\right)}\right) \bar{\eta}^{\varepsilon_{2}}\left(G^{\left(k_{2}\right)}\right) \bar{\eta}^{\varepsilon_{3}}\left(\phi^{\left(k_{3}\right)}\right) \bar{\eta}^{\varepsilon_{4}}\left(\psi^{\left(k_{4}\right)}\right)
\end{aligned}
$$

where $\varepsilon_{i}=0,1, M \in \mathbb{N}$ and (with $F^{\left(k_{i}\right)}$ denoting the k_{i}-th derivative of F by x)

$$
\bar{\eta}^{\varepsilon_{i}}\left(F^{\left(k_{i}\right)}\right)= \begin{cases}\bar{\eta}\left(F^{\left(k_{i}\right)}\right) & \text { if } \varepsilon_{i}=1 \\ F^{\left(k_{i}\right)} & \text { otherwise }\end{cases}
$$

Second, observe that, since the operator c vanishes on $\mathfrak{o s p}(1 \mid 2)$ (that is, it vanishes when just one argument is from $\mathfrak{o s p}(1 \mid 2))$, we have $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, k_{4}}=0$ for $\varepsilon_{1}+k_{1} \leq 2$ or $\varepsilon_{2}+k_{2} \leq 2$. The invariance property of c with respect to $X_{H} \in \mathfrak{o s p}(1 \mid 2)$ reads:

$$
\begin{align*}
\mathfrak{L}_{X_{H}}^{\lambda, \mu ; \nu} c\left(X_{F}, X_{G}, \phi, \psi\right)-(-1)^{|c||H|} & c\left(\left[X_{H}, X_{F}\right], X_{G}, \phi, \psi\right) \\
& -(-1)^{|H|(|c|+|F|)} c\left(X_{F},\left[X_{H}, X_{G}\right], \phi, \psi\right)=0 . \tag{3.1}
\end{align*}
$$

By direct computation using (3.1) together with (2.1) and the graded Leibniz formula

$$
\bar{\eta}^{j} \circ F=\sum_{i=0}^{j}\binom{j}{i}_{s}(-1)^{|F|(j-i)} \bar{\eta}^{i}(F) \bar{\eta}^{j-i}
$$

with

$$
\binom{j}{i}_{s}= \begin{cases}\binom{\left[\frac{j}{2}\right]}{\left[\frac{i}{2}\right]} & \text { if } i \text { is even or } j \text { is odd } \\ 0 & \text { otherwise }\end{cases}
$$

we easily check that the invariant property of c with respect to the vector field X_{x} yields

$$
\frac{d}{d x} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, k_{4}}=0 \quad \text { and } \quad \bar{\eta}\left(c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, k_{4}}\right)=0
$$

Therefore, the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, k_{4}}$ are functions of $|F|$ and $|G|$. We also get

$$
\|\varepsilon\|+2 \sum_{i=1}^{4} k_{i}=2(\nu-\mu-\lambda)+4, \quad \text { where }\|\varepsilon\|=\sum_{i=1}^{4} \varepsilon_{i} .
$$

So, the parameters λ, μ, and ν must satisfy $2(\nu-\mu-\lambda)+4=n$, where $n \in \mathbb{N}$. The corresponding operator can be expressed as

$$
\begin{equation*}
c\left(X_{F}, X_{G}, \phi, \psi\right)=\sum_{\varepsilon, k_{1}, k_{2}, k_{3}} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|,|\phi|,|\psi|) A_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(F, G, \phi, \psi), \tag{3.2}
\end{equation*}
$$

where $\varepsilon_{1}+k_{1} \geq 3, \varepsilon_{2}+k_{2} \geq 3$, and

$$
A_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(F, G, \phi, \psi)=\bar{\eta}^{\varepsilon_{1}}\left(F^{\left(k_{1}\right)}\right) \bar{\eta}^{\varepsilon_{2}}\left(G^{\left(k_{2}\right)}\right) \bar{\eta}^{\varepsilon_{3}}\left(\phi^{\left(k_{3}\right)}\right) \bar{\eta}^{\varepsilon_{4}}\left(\psi^{\left(\frac{1}{2}(n-\|\varepsilon\|)-k_{1}-k_{2}-k_{3}\right)}\right)
$$

We easily check that the operator c is homogeneous: c is even or odd according to whether n is even or odd. Moreover, the superskew-symmetric condition

$$
c\left(X_{F}, X_{G}, \phi, \psi\right)=-(-1)^{|F||G|} c\left(X_{G}, X_{F}, \phi, \psi\right)
$$

leads to the following relation:

$$
\begin{equation*}
c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|,|\phi|,|\psi|)=-(-1)^{\varepsilon_{2} \cdot|F|+\varepsilon_{1} \cdot|G|+\varepsilon_{1} \cdot \varepsilon_{2}} c_{\varepsilon_{2}, \varepsilon_{1}, \varepsilon_{3}, \varepsilon_{4}}^{k_{2}, k_{1}, k_{3}, n}(|G|,|F|,|\phi|,|\psi|) . \tag{3.3}
\end{equation*}
$$

Second, we consider the invariance property with respect to $X_{x^{2}}$ and $X_{x \theta}$. According to the parity of n, we distinguish two cases.

The case where n is even.

In this case, the invariance property of c with respect to $X_{x \theta}$ reads:
$\mathfrak{L}_{X_{x \theta}}^{\lambda, \mu ; \nu} c\left(X_{F}, X_{G}, \phi, \psi\right)-c\left(\left[X_{x \theta}, X_{F}\right], X_{G}, \phi, \psi\right)-(-1)^{|F|} c\left(X_{F},\left[X_{x \theta}, X_{G}\right], \phi, \psi\right)=0$.
Collecting the terms in $x \theta A_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(F, G, \phi, \psi)$, we get

$$
\begin{align*}
c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|,|\phi|,|\psi|) & =(-1)^{\varepsilon_{1}} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|+1,|G|,|\phi|,|\psi|) \\
& =(-1)^{\varepsilon_{1}+\varepsilon_{2}} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|+1,|\phi|,|\psi|) \tag{3.4}\\
& =(-1)^{\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|,|\phi|+1,|\psi|) .
\end{align*}
$$

According to formulae (3.3) and (3.4), we deduce that $c_{0,0,0,0}^{k_{1}, k_{1}, k_{3}, n}=c_{0,0,1,1}^{k_{1}, k_{1}, k_{3}, n}=$ 0 . The invariance property of c with respect to $X_{x^{2}}$ reads:

$$
\mathfrak{L}_{X_{x^{2}}}^{\lambda_{, \mu} ; \nu} c\left(X_{F}, X_{G}, \phi, \psi\right)-c\left(\left[X_{x^{2}}, X_{F}\right], X_{G}, \phi, \psi\right)-c\left(X_{F},\left[X_{x^{2}}, X_{G}\right], \phi, \psi\right)=0 .
$$

Collecting the terms in $\theta A_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(F, G)$, we get with the help of (3.3) the following conditions:

$$
\begin{align*}
& \text { - } \Lambda_{k_{1}, k_{2}, k_{3}-2 \mu+1}^{n} c_{0,0,1,1}^{k_{1}, k_{2}, k_{3}, n}-\left(k_{1}-2\right) c_{1,0,1,0}^{k_{1}, k_{2}, k_{3}, n}-(-1)^{|F|}\left(k_{2}-2\right) c_{0,1,1,0}^{k_{1}, k_{2}, k_{3}, n} \\
& +(-1)^{|F|+|G|}\left(k_{3}-2\right) c_{0,0,0,0}^{k_{1}, k_{2}, k_{3}+1, n}=0, k_{1}+k_{2}+k_{3} \leq \frac{n-2}{2} \text { and } k_{1}>k_{2} \geq 3 \\
& \text { - } \Lambda_{k_{1}, k_{2}, k_{3}+1}^{n} c_{1,0,1,0}^{k_{1}, k_{2}, k_{3}, n}+\left(k_{1}+1\right) c_{0,0,1,1}^{k_{1}+1, k_{2}, k_{3}, n}+(-1)^{|F|}\left(k_{2}-2\right) c_{1,1,1,1}^{k_{1}, k_{2}, k_{3}, n} \\
& -(-1)^{|F|+|G|}\left(k_{3}+1\right) c_{1,0,0,1}^{k_{1}, k_{2}, k_{3}+1, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-4}{2} \text { and } k_{1} \geq 2, k_{2} \geq 3 ; \\
& \text { - } \Lambda_{k_{1}, k_{2}, k_{3}-2 \mu+2}^{n} c_{1,1,1,1}^{k_{1}, k_{2}, k_{3}, n}+\left(k_{1}+1\right) c_{0,1,1,0}^{k_{1}+1, k_{2}, k_{3}, n}-(-1)^{|F|}\left(k_{2}+1\right) c_{1,0,1,0}^{k_{1}, k_{2}+1, k_{3}, n} \\
& -(-1)^{|F|+|G|}\left(k_{3}+1\right) c_{1,1,0,0}^{k_{1}, k_{2}, k_{3}+1, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-4}{2} \text { and } k_{1} \geq k_{2} \geq 2 \\
& \text { • } \Lambda_{k_{1}, k_{2}, k_{3}-2 \mu+1}^{n} c_{0,1,0,1}^{k_{1}, k_{2}, k_{3}, n}-\left(k_{1}-2\right) c_{1,1,0,0}^{k_{1}, k_{2}, k_{3}, n}+(-1)^{|F|}\left(k_{2}+1\right) c_{0,0,0,0}^{k_{1}, k_{2}+1, k_{3}, n} \\
& +(-1)^{|F|+|G|}\left(2 \lambda+k_{3}\right) c_{0,1,1,0}^{k_{1}, k_{2}, k_{3}, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-2}{2} \text { and } k_{1} \geq 3, k_{2} \geq 2 \\
& \text { - } \Lambda_{k_{1}, k_{2}, k_{3}}^{n} c_{0,0,0,0}^{k_{1}, k_{2}, k_{3}, n}-\left(k_{1}-2\right) c_{1,0,0,1}^{k_{1}, k_{2}, k_{3}, n}-(-1)^{|F|}\left(k_{2}-2\right) c_{0,1,0,1}^{k_{1}, k_{2}, k_{3}, n} \\
& -(-1)^{|F|+|G|}\left(2 \lambda+k_{3}\right) c_{0,0,1,1}^{k_{1}, k_{2}, k_{3}, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-2}{2} \text { and } k_{1}>k_{2} \geq 3 \\
& \text { - } \Lambda_{k_{1}, k_{2}, k_{3}+1}^{n} c_{1,1,0,0}^{k_{1}, k_{2}, k_{3}, n}+\left(k_{1}+1\right) c_{0,1,0,1}^{k_{1}+1, k_{2}, k_{3}, n}-(-1)^{|F|}\left(k_{2}+1\right) c_{1,0,0,1}^{k_{1}, k_{2}+1, k_{3}, n} \\
& -(-1)^{|F|+|G|}\left(2 \lambda+k_{3}\right) c_{1,1,1,1}^{k_{1}, k_{2}, k_{3}, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-4}{2} \text { and } k_{1} \geq k_{2} \geq 2, \tag{3.5}
\end{align*}
$$

where $\Lambda_{k_{1}, k_{2}, k_{3}}^{n}=(-1)^{|F|+|G|+|\phi|}\left(\frac{n}{2}-k_{1}-k_{2}-k_{3}\right)$. For each n and any λ, we can see, with the help of Maple, that the system (3.5) is linearly independent. Now according to formula (3.3), we can see that all the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ can be expressed in terms of

$$
\begin{cases}c_{1,0,1,0}^{k_{1}, k_{2}, k_{3}, n}, & k_{1} \geq 2 \text { and } k_{2} \geq 3 \tag{3.6}\\ c_{1,0,0,1}^{k_{1}, k_{2}, k_{3}, n}, & k_{1} \geq 2 \text { and } k_{2} \geq 3 \\ c_{0,0,0,0}^{k_{1}, k_{2}, k_{3}, n}, & k_{1}>k_{2} \geq 3 \\ c_{0,0,1,1}^{k_{1}, k_{2}, k_{3}, n}, & k_{1}>k_{2} \geq 3 \\ c_{1,1,0,0}^{k_{1}, k_{2}, k_{3}, n}, & k_{1} \geq k_{2} \geq 2 \\ c_{1,1,1,1}^{k_{1}, k_{2}, k_{3}, n}, & k_{1} \geq k_{2} \geq 2\end{cases}
$$

So, we deduce that the dimension of the space of solutions is equal to
\#(the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ given by (3.6) $-\#$ (equations given by (3.5).

We will need the following lemma.

Lemma 3.3.

(1) For $n=4 p$, the number of the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ given by (3.6) is $\frac{1}{48}\left(4 n^{3}-93 n^{2}+758 n-335\right)$ and the number of equations given by (3.5) is $\frac{1}{48}\left(4 n^{3}-109 n^{2}+1090 n-3472\right)$. Moreover, for generic λ and μ, the space of $\mathfrak{o s p}(1 \mid 2)$-invariant operators is spanned by (3.7) (see below).
(2) For $n=4 p+2$, the number of the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ given by (3.6) is $\frac{1}{12}\left(n^{3}-24 n^{2}+194 n-528\right)$ and the number of equations given by 3.5 is $\frac{1}{12}\left(n^{3}-27 n^{2}+245 n-750\right)$. Moreover, for generic λ and μ, the space of $\mathfrak{o s p}(1 \mid 2)$-invariant operators is spanned by (3.8) (see below).

Proof. First, we can see, by a direct computation, that the number of the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ given by (3.6) and the number of equations given by (3.5) are as in Lemma 3.3 for $n=4 p$ and $4 p+2$.

Second, for $k_{1}+k_{2}+k_{3} \leq \frac{n}{2}-1$ with $k_{1}>k_{2} \geq 3$ and for generic λ, μ, it follows from the first (resp., fifth) equation in (3.5) that the coefficients $c_{0,0,1,1}^{k_{1}, k_{2}, k_{3}, n}$ (resp., $c_{0,0,0,0}^{k_{1}, k_{2}, k_{3}, n}$ with $k_{1}+k_{2}+k_{3} \leq \frac{n}{2}-1$) are determined in terms of $c_{1,0,1,0}^{k_{1}, k_{2}, k_{3}, n}$ and $c_{0,0,0,0}^{k_{1}, k_{2}, k_{3}, n}$ (resp., $c_{1,0,0,1}^{k_{1}, k_{2}, k_{3}, n}$ and $c_{0,0,0,0}^{k_{1}, k_{2}, \frac{n}{2}-k_{1}-k_{2}, n}$). Moreover, for $k_{1}+k_{2}+k_{3} \leq \frac{n}{2}-1$ with $k_{1} \geq 3, k_{2} \geq 2$ and for generic λ, μ, it follows from the fourth equation in (3.5) that the coefficients $c_{1,0,0,1}^{k_{2}, k_{1}, k_{3}, n}$ can be expressed in terms of $c_{0,0,0,0}^{k_{1}, k_{2}, \frac{n}{2}-k_{1}-k_{2}, n}$, $c_{1,0,1,0}^{k_{2}, k_{1}, k_{3}, n}$ and $c_{1,1,0,0}^{k_{1}, k_{2}, k_{3}, n}$. Furthermore, for $k_{1}+k_{2}+k_{3} \leq \frac{n}{2}-2$ with $k_{1} \geq k_{2} \geq 2$ and for generic λ, μ, it follows from the third (resp., sixth) equation in (3.5) that the coefficients $c_{1,1,1,1}^{k_{1}, k_{2}, k_{3}, n}$ (resp., $c_{1,1,0,0}^{k_{1}, k_{2}, k_{3}, n}$) are determined in terms of $c_{1,0,1,0}^{k_{1}, k_{2}+1, k_{3}, n}$ and $c_{1,1,0,0}^{k_{1}, k_{2}, k_{3}+1, n}$ (resp., $c_{0,0,0,0}^{k_{1}, k_{2}, \frac{n}{-}-k_{1}-k_{2}, n}, c_{1,0,1,0}^{k_{2}, k_{1}, k_{3}, n}$, and $c_{1,1,0,0}^{k_{1}, k_{2}, \frac{n}{2}-k_{1}-k_{2}-1, n}$). Finally, for $k_{1}+k_{2}+k_{3} \leq \frac{n}{2}-2$ with $k_{1} \geq 2, k_{2} \geq 3$, it follows from the second equation in (3.5) that the coefficients $c_{1,0,1,0}^{k_{1}, k_{2}, k_{3}, n}$ can be expressed in terms of

$$
c_{0,0,0,0}^{k_{1}, k_{2}, \frac{n}{2}-k_{1}-k_{2}, n}, \quad c_{1,0,1,0}^{k_{1}, k_{2}, \frac{n}{2}-k_{1}-k_{2}-1, n}, \quad \text { and } \quad c_{1,1,0,0}^{k_{1}, k_{2}, \frac{n}{2}-k_{1}-k_{2}-1, n}
$$

Thus, we deduce, for generic λ and μ, that the space of $\mathfrak{o s p}(1 \mid 2)$-invariant operators has the following structure:
(i) For $n=4 p$, it is $\frac{1}{4}(n-8)(n-9)$-dimensional and spanned by

$$
\begin{array}{ll}
c_{1,1,0,0}^{2,2,2 p-5, n}, & c_{0,0,0,0}^{4,3,2 p-7, n}, \\
c_{1,1,0,0}^{3,2,2 p-6, n}, c_{1,1,0,0}^{3,3,2 p-7, n}, & c_{0,0,0,0}^{5,3,2 p-8, n}, c_{0,0,0,0}^{5,4,2 p-9, n}, \\
c_{1,1,0,0}^{4,2,2 p-7, n}, c_{1,1,0,0}^{4,3,2 p-8, n}, c_{1,1,0,0}^{4,4,2 p-9, n}, & c_{0,0,0,0}^{6,3,2 p-9, n}, c_{0,0,0,0}^{6,4,2 p-10, n}, c_{0,0,0,0}^{6,5,2 p-11, n}, \\
\vdots & \vdots \\
c_{1,1,0,0}^{2 p-4,2,1, n}, c_{1,1,0,0}^{2 p-4,3,0, n}, & c_{0,0,0,0}^{2 p-4,3,1, n}, c_{0,0,0,0}^{2 p-4,4,0, n} \\
c_{1,1,0,0}^{2 p-3,2,0, n}, & c_{0,0,0,0}^{2 p-3,3,0, n}
\end{array}
$$

and

$$
\begin{align*}
& c_{1,0,1,0}^{2,3,2 p-6, n}, c_{1,0,1,0}^{2,4,2 p-7, n} \cdots, c_{1,0,1,0}^{2,2 p-3,0, n} \\
& c_{1,0,1,0}^{3,3,2 p-7, n}, c_{1,0,1,0}^{3,4,2 p-8, n} \cdots, c_{1,0,1,0}^{3,2 p-4,0, n} \\
& \quad \vdots \\
& \begin{array}{l}
\quad \\
c_{1,0,1,0}^{2 p-5,3,1, n}, c_{1,0,1,0}^{2 p-5,4,0, n} \\
c_{1,0,1,0}^{2 p-4,3,0, n}
\end{array} \\
& \hline \tag{3.7}
\end{align*}
$$

(ii) For $n=4 p+2$, it is $\frac{1}{4}\left(n^{2}-17 n+74\right)$-dimensional and spanned by

$$
\begin{array}{cc}
c_{1,1,0,0}^{2,2,2 p-4, n}, & c_{0,0,0,0}^{4,3,2 p-6, n}, \\
c_{1,1,0,0}^{3,2,2 p-5, n}, c_{1,1,0,0}^{3,3,2 p-6, n}, & c_{0,0,0,0}^{5,3,2 p-7, n}, c_{0,0,0,0}^{5,4,2 p-8, n}, \\
c_{1,1,0,0}^{4,2,2 p-6, n}, c_{1,1,0,0}^{4,3,2 p-7, n}, c_{1,1,0,0}^{4,4,2 p-8, n}, & c_{0,0,0,0}^{6,3,2 p-8, n}, c_{0,0,0,0}^{6,4,2 p-9, n}, c_{0,0,0,0}^{6,5,2 p-10, n}, \\
\vdots & \vdots \\
c_{1,1,0,0}^{2 p-3,2,1, n}, c_{1,1,0,0}^{2 p-3,3,0, n}, & c_{0,0,0,0}^{2 p-3,3,1, n}, c_{0,0,0,0}^{2 p-3,4,0, n}, \\
c_{1,1,0,0}^{2 p-2,0, n}, & c_{0,0,0,0}^{2 p-2,3,0, n}
\end{array}
$$

and

$$
\begin{align*}
& c_{1,0,1,0}^{2,3,2 p-5, n}, c_{1,0,1,0}^{2,4,2 p-6, n} \cdots, c_{1,0,1,0}^{2,2 p-2,0, n} \\
& c_{1,0,1,0}^{3,3,2 p-6, n}, c_{1,0,1,0}^{3,4,2 p-7, n} \cdots, c_{1,0,1,0}^{3,2 p-3,0, n} \\
& \quad \vdots \\
& \quad \tag{3.8}\\
& c_{1,0,1,0}^{2 p-4,3,1, n}, c_{1,0,1,0}^{2 p-4,4,0, n} \\
& c_{1,0,1,0}^{2 p-3,3,0, n}
\end{align*}
$$

The case where n is odd.

In this case, the invariance property of c with respect to $X_{x \theta}$ reads:

$$
\mathfrak{L}_{X_{x \theta}}^{\lambda_{x}, \nu \nu} c\left(X_{F}, X_{G}, \phi, \psi\right)-c\left(\left[X_{x \theta}, X_{F}\right], X_{G}, \phi, \psi\right)-(-1)^{|F|} c\left(X_{F},\left[X_{x \theta}, X_{G}\right], \phi, \psi\right)=0 .
$$

Collecting the terms in $x \theta A_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(F, G, \phi, \psi)$, we get

$$
\begin{align*}
c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|,|\phi|,|\psi|) & =(-1)^{\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|+1,|G|,|\phi|,|\psi|) \\
& =(-1)^{\varepsilon_{3}+\varepsilon_{4}} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|+1,|\phi|,|\psi|) \tag{3.9}\\
& =(-1)^{\varepsilon_{4}} c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|,|\phi|+1,|\psi|) .
\end{align*}
$$

According to formulae (3.3) and (3.9), we deduce that $c_{0,0,1,0}^{k_{1}, k_{1}, k_{3}, n}=c_{0,0,0,1}^{k_{1}, k_{1}, k_{3}, n}=$
0 . The invariance property of c with respect to $X_{x^{2}}$ reads:

$$
\mathfrak{L}_{X_{x^{2}}}^{\lambda_{j} \mu ; \nu} c\left(X_{F}, X_{G}, \phi, \psi\right)-c\left(\left[X_{x^{2}}, X_{F}\right], X_{G}, \phi, \psi\right)-c\left(X_{F},\left[X_{x^{2}}, X_{G}\right], \phi, \psi\right)=0 .
$$

Collecting the terms in $\theta A_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(F, G)$, we get with the help of (3.3) the following conditions:

$$
\begin{align*}
& \bullet \Lambda_{k_{1}, k_{2}, k_{3}+\frac{1}{2}}^{n} c_{0,0,1,0}^{k_{1}, k_{2}, k_{3}, n}-\left(k_{1}-2\right) c_{1,0,1,1}^{k_{1}, k_{2}, k_{3}, n}-(-1)^{|F|}\left(k_{2}-2\right) c_{0,1,1,1}^{k_{1}, k_{2}, k_{3}, n} \\
& +(-1)^{|F|+|G|}\left(k_{3}+1\right) c_{0,0,0,1}^{k_{1}, k_{2}, k_{3}+1, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-3}{2} \text { and } k_{1}>k_{2} \geq 3 ; \\
& \bullet \Lambda_{k_{1}, k_{2}, k_{3}-2 \mu+\frac{3}{2}}^{n} c_{0,1,1,1}^{k_{1}, k_{2}, k_{3}, n}+\left(k_{1}-2\right) c_{1,1,1,0}^{k_{1}, k_{2}, k_{3}, n}-(-1)^{|F|}\left(k_{2}+1\right) c_{0,0,1,0}^{k_{1}, k_{2}+1, k_{3}, n} \\
& +(-1)^{|F|+|G|}\left(k_{3}+1\right) c_{0,1,0,0}^{k_{1}, k_{2}, k_{3}+1, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-3}{2} \text { and } k_{1} \geq 3, k_{2} \geq 2 ; \\
& \bullet \Lambda_{k_{1}, k_{2}, k_{3}+\frac{3}{2}}^{n} c_{1,1,1,0}^{k_{1}, k_{2}, k_{3}, n}-\left(k_{1}+1\right) c_{0,1,1,1}^{k_{1}+1, k_{2}, k_{3}, n}+(-1)^{|F|}\left(k_{2}+1\right) c_{1,0,1,1}^{k_{1}, k_{2}+1, k_{3}, n} \\
& -(-1)^{|F|+|G|}\left(k_{3}+1\right) c_{1,1,0,1}^{k_{1}, k_{2}, k_{3}+1, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-5}{2} \text { and } k_{1} \geq k_{2} \geq 2 ; \\
& \bullet \Lambda_{k_{1}, k_{2}, k_{3}-2 \mu+\frac{1}{2}}^{n} c_{0,0,0,1}^{k_{1}, k_{2}, k_{3}, n}+\left(k_{1}-2\right) c_{1,0,0,0}^{k_{1}, k_{2}, k_{3}, n}+(-1)^{|F|}\left(k_{2}-2\right) c_{0,1,0,0}^{k_{1}, k_{2}, k_{3}, n} \\
& +(-1)^{|F|+|G|}\left(2 \lambda+k_{3}\right) c_{0,0,1,0}^{k_{1}, k_{2}, k_{3}, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-1}{2} \text { and } k_{1}>k_{2} \geq 3 ; \\
& \bullet \Lambda_{k_{1}, k_{2}, k_{3}-2 \mu+\frac{3}{2}}^{n} c_{1,1,0,1}^{k_{1}, k_{2}, k_{3}, n}-\left(k_{1}+1\right) c_{0,1,0,0}^{k_{1}+1, k_{2}, k_{3}, n}+(-1)^{|F|}\left(k_{2}+1\right) c_{1,0,0,0}^{k_{1}, k_{2}+1, k_{3}, n} \\
& +(-1)^{|F|+|G|}\left(2 \lambda+k_{3}\right) c_{1,1,1,0}^{k_{1}, k_{2}, k_{3}, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-3}{2} \text { and } k_{1} \geq k_{2} \geq 2 ; \\
& \bullet \Lambda_{k_{1}, k_{2}, k_{3}+\frac{1}{2}}^{n} c_{0,1,0,0}^{k_{1}, k_{2}, k_{3}, n}+\left(k_{1}-2\right) c_{1,1,0,1}^{k_{1}, k_{2}, k_{3}, n}-(-1)^{|F|}\left(k_{2}+1\right) c_{0,0,0,1}^{k_{1}, k_{2}+1, k_{3}, n} \\
& -(-1)^{|F|+|G|}\left(2 \lambda+k_{3}\right) c_{0,1,1,1}^{k_{1}, k_{2}, k_{3}, n}=0, \quad k_{1}+k_{2}+k_{3} \leq \frac{n-3}{2} \text { and } k_{1} \geq 3, k_{2} \geq 2, \tag{3.10}
\end{align*}
$$

where $\Lambda_{k_{1}, k_{2}, k_{3}}^{n}=(-1)^{|F|+|G|+|\phi|}\left(\frac{n}{2}-k_{1}-k_{2}-k_{3}\right)$. For each n and any λ, we can see, with the help of Maple, that the system (3.10) is linearly independent. Now
according to formulae (3.3), we can see that all the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ can be expressed in terms of

$$
\begin{cases}c_{1,0,0,}^{k_{1}, k_{2}, k_{3}, n}, & k_{1} \geq 2 \text { and } k_{2} \geq 3 \tag{3.11}\\ c_{1,0,1,1}^{k_{1}, k_{2}, k_{3}, n}, & k_{1} \geq 2 \text { and } k_{2} \geq 3 \\ c_{0,0,1,0}^{k_{1}, k_{2}, k_{3}, n}, & k_{1}>k_{2} \geq 3 \\ c_{0,0,0,1}^{k_{1}, k_{2}, k_{3}, n}, & k_{1}>k_{2} \geq 3 \\ c_{1,1,1,0}^{k_{1}, k_{2}, k_{3}, n}, & k_{1} \geq k_{2} \geq 2 \\ c_{1,1,0,1}^{k_{1}, k_{2}, k_{3}, n}, & k_{1} \geq k_{2} \geq 2\end{cases}
$$

So, we deduce that the dimension of the space of solutions is equal to
$\#\left(\right.$ the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ given by (3.11) $-\#($ equations given by (3.10) .

We will need the following lemma.

Lemma 3.4.

(1) For $n=4 p+1$, the number of the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ given by (3.11) is $\frac{1}{12}\left(n^{3}-24 n^{2}+194 n-531\right)$ and the number of equations given by 3.10 is $\frac{1}{12}\left(n^{3}-27 n^{2}+245 n-747\right)$. Moreover, for generic λ and μ, the space of $\mathfrak{o s p}(1 \mid 2)$-invariant operators is spanned by (3.12) (see below).
(2) For $n=4 p+3$, the number of the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ given by 3.11 is $\frac{1}{12}\left(n^{3}-24 n^{2}+194 n-525\right)$ and the number of equations given by 3.10 is $\frac{1}{12}\left(n^{3}-27 n^{2}+245 n-747\right)$. Moreover, for generic λ and μ, the space of $\mathfrak{o s p}(1 \mid 2)$-invariant operators is spanned by 3.13) (see below).

Proof. First, we can see, by a direct computation, that the number of the coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ given by (3.11) and the number of equations given by 3.10) are as in Lemma 3.4 for $n=4 p+1$ and $4 p+3$. Moreover, in a similar way as in the proof of Lemma 3.3, we deduce, for generic λ and μ, that the space of $\mathfrak{o s p}(1 \mid 2)$-invariant operators has the following structure:
(i) For $n=4 p+1$, it is $\frac{1}{4}(n-8)(n-9)$-dimensional and spanned by

$$
\begin{array}{cc}
c_{1,1,1,0}^{2,2,2 p-5, n}, & c_{0,0,1,0}^{4,3,2 p-7, n}, \\
c_{1,1,1,0}^{3,2,2 p-6, n}, c_{1,1,1,0}^{3,3,2 p-7, n}, & c_{0,0,1,0}^{5,3,2 p-8, n}, c_{0,0,1,0}^{5,4,2 p-9, n}, \\
c_{1,1,1,0}^{4,2,2 p-7, n}, c_{1,1,1,0}^{4,3,2 p-8, n}, c_{1,1,1,0}^{4,4,2 p-9, n}, & c_{0,0,1,0}^{6,3,2 p-9, n}, c_{0,0,1,0}^{6,4,2 p-10, n}, c_{0,0,1,0}^{6,5,2 p-11, n}, \\
\vdots & \\
c_{1,1,1,0}^{2 p-4,2,1, n}, c_{1,1,1,0}^{2 p-4,3,0, n}, & \\
c_{1,1,1,0}^{2 p-3,2,0, n}, & c_{0,0,1,0}^{2 p-4,3,1, n}, c_{0,0,1,0}^{2 p-4,4,0, n} \\
2 p-3,3,0, n \\
2 p, 0,0
\end{array},
$$

and

$$
\begin{align*}
& c_{1,0,0,0}^{2,3,2 p-5, n}, c_{1,0,0,0}^{2,4,2 p-6, n} \cdots, c_{1,0,0,0}^{2,2 p-2,0, n}, \\
& c_{1,0,0,0}^{3,3,2 p-6, n}, c_{1,0,0,0}^{3,4,2 p-7, n} \cdots, c_{1,0,0,0}^{3,2 p-3,0, n}, \\
& \quad \vdots \\
& \begin{array}{l}
\quad \\
c_{1,0,0,0}^{2 p-4,3,1, n}, c_{1,0,0,0}^{2 p-4,4,0, n} \\
c_{1,0,0,0}^{2 p-3,3,0, n}
\end{array} \tag{3.12}
\end{align*}
$$

(ii) For $n=4 p+3$, it is $\frac{1}{4}\left(n^{2}-17 n+74\right)$-dimensional and spanned by

$$
\begin{align*}
& c_{1,1,1,0}^{2,2,2 p-4, n}, \\
& c_{1,1,1,0}^{3,2,2 p-5, n}, c_{1,1,1,0}^{3,3,2 p-6, n}, \\
& c_{1,1,1,0}^{4,2,2 p-6, n}, c_{1,1,1,0}^{4,3,2 p-7, n}, c_{1,1,1,0}^{4,4,2 p-8, n}, \\
& \quad \vdots \\
& \quad \\
& c_{1,1,1,0}^{2 p-3,2,1, n}, c_{1,1,1,0}^{2 p-3,3,0, n}, \\
& c_{1,1,1,0}^{2 p-2,2,0, n}, \\
& d \\
& c_{1,0,0,0}^{2,3,2 p-4, n}, c_{1,0,0,0}^{2,4,2 p-5, n} \cdots, c_{1,0,0,0}^{2,2 p-1,0, n}, \tag{3.13}\\
& c_{1,0,0,0}^{3,3,2 p-5, n}, c_{1,0,0,0}^{3,4,2 p-6, n} \cdots, c_{1,0,0,0}^{3,2 p-2,0, n}, \\
& \quad \vdots \\
& c_{1,0,0,0}^{2 p-3,3,1, n}, c_{1,0,0,0}^{2 p-3,0,0, n}, \\
& c_{1,0,0,0}^{2 p-2,3,0, n}
\end{align*}
$$

$$
c_{0,0,1,0}^{4,3,2 p-6, n}
$$

$$
c_{0,0,1,0}^{5,3,2 p-7, n}, c_{0,0,1,0}^{5,4,2 p-8, n}
$$

$$
c_{0,0,1,0}^{6,3,2 p-8, n}, c_{0,0,1,0}^{6,4,2 p-9, n}, c_{0,0,1,0}^{6,5,2 p-10, n}
$$

$$
c_{0,0,1,0}^{2 p-3,3,1, n}, c_{0,0,1,0}^{2 p-3,4,0, n}
$$

and

Now, using Lemma 3.3 and Lemma 3.4 we easily check that Theorem 3.2 is proved.
3.3. The $\mathfrak{o s p}(1 \mid 2)$-relative cohomology of $\mathcal{K}(1)$. In this subsection, we will compute the second differential $\mathfrak{o s p}(1 \mid 2)$-relative cohomology spaces $\mathrm{H}_{\text {diff }}^{2}(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2)$; $\left.\mathfrak{D}_{\lambda, \mu ; \nu}\right)$. Our second main result is the following:
Theorem 3.5. For $\nu-\mu-\lambda \leq \frac{9}{2}$, the space $\mathrm{H}_{\mathrm{diff}}^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$ has the following structure:
(i) If $\nu-\mu-\lambda=3$, then

$$
\mathrm{H}_{\mathrm{diff}}^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right) \simeq \begin{cases}\mathbb{R} & \text { if }(\lambda, \mu) \in\left\{(0,0),\left(0,-\frac{5}{2}\right),\left(-\frac{5}{2}, 0\right)\right\} \\ 0 & \text { otherwise }\end{cases}
$$

(ii) If $\nu-\mu-\lambda=\frac{7}{2}$, then

$$
\mathrm{H}_{\mathrm{diff}}^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right) \simeq \begin{cases}\mathbb{R} & \text { if }(\lambda, \mu) \in\left\{\begin{array}{l}
(0,0),\left(\frac{-3}{2}, 0\right), \\
\left(-\frac{5}{4}, 0\right),\left(0,-\frac{5}{4}\right)
\end{array}\right\} \\
0 & \text { otherwise. }\end{cases}
$$

(iii) If $\nu-\mu-\lambda=4$, then

$$
\mathrm{H}_{\mathrm{diff}}^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right) \simeq \begin{cases}\mathbb{R} & \text { if }(\lambda, \mu) \in\left\{\begin{array}{c}
(0,-2),\left(0,-\frac{1}{2}\right) \\
(-1,0),\left(-\frac{1}{2}, 0\right)
\end{array}\right\} \\
0 & \text { otherwise } .\end{cases}
$$

(iv) If $\nu-\mu-\lambda=\frac{9}{2}$, then

$$
\mathrm{H}_{\mathrm{diff}}^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right) \simeq \begin{cases}\mathbb{R} & \text { if }(\lambda, \mu) \in\left\{(-2,0),\left(-\frac{5}{2}, 0\right)\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Remark 3.6. $\mathrm{H}_{\text {diff }}^{1}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$ has been computed in [3].
The proof of Theorem 3.5 will be the subject of subsection 3.5. In fact, we first need the description of $\mathfrak{o s p}(1 \mid 2)$-invariant trilinear operators, from $\mathfrak{F}_{-1} \otimes \mathfrak{F}_{\lambda} \otimes \mathfrak{F}_{\mu}$ to $\mathfrak{F}_{\lambda+\mu+k-1}$.

3.4. $\mathfrak{o s p}(1 \mid 2)$-invariant trilinear differential operators.

Proposition 3.7 ([3]). The space of trilinear differential operators $T: \mathcal{K}(1) \otimes \mathfrak{F}_{\lambda} \otimes$ $\mathfrak{F}_{\mu} \rightarrow \mathfrak{F}_{\lambda+\mu+k-1}$ which are $\mathfrak{o s p}(1 \mid 2)$-invariant and vanish on $\mathfrak{o s p}(1 \mid 2)$ is purely even if $\nu-\mu-\lambda$ is integer and is purely odd if $\nu-\mu-\lambda$ is semi-integer; moreover, it is:
(i) $2(\nu-\mu-\lambda-1)$-dimensional if $2(\nu-\mu-\lambda) \in \mathbb{N}+3$, generated by

$$
\begin{aligned}
& c_{1,0,0}^{\frac{k-1}{2}, 0,0}, c_{1,0,0}^{\frac{k-3}{2}, 1,0}, c_{1,0,0}^{\frac{k-5}{2}, 2,0}, \ldots, c_{1,0,0}^{2, \frac{k-5}{2}, 0} \\
& c_{1,1,1}^{\frac{k-3}{2}, 0,0}, c_{1,1,1}^{\frac{k-5}{2}, 1,0}, c_{1,1,1}^{\frac{k-7}{2}, 2,0}, \ldots, c_{1, \frac{1,1}{2, \frac{k-7}{2}}, 0} \quad \text { if } \nu-\mu-\lambda \text { is semi-integer } ; \\
& \text { and } \\
& c_{1,1,0}^{\frac{k}{2}-1,0,0}, c_{1,1,0}^{\frac{k}{2}-2,0,1}, c_{1,1,0}^{\frac{k}{2}-3,0,2}, \ldots, c_{1,1,0}^{2,0, \frac{k}{2}-3}, \\
& c_{1,0,1}^{\frac{k}{2}-1,0,0}, c_{1,0,1}^{\frac{k}{2}-2,1,0}, c_{1,0,1}^{\frac{k}{2}-3,2,0}, \ldots, c_{1,0,1}^{2, \frac{k}{2}-3,0} \quad \text { if } \nu-\mu-\lambda \text { is integer. }
\end{aligned}
$$

(ii) zero-dimensional otherwise.

In order to prove Theorem 3.5, we will study properties of the coboundaries.
Lemma 3.8. Let $B: \mathcal{K}(1) \rightarrow \mathfrak{D}_{\lambda, \mu ; \nu}$ be an operator vanishing on $\mathfrak{o s p}(1 \mid 2)$. If $\delta(B)$ belongs to $B^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$, then B is an $\mathfrak{o s p}(1 \mid 2)$-invariant trilinear differential operator.

Proof. For all $X, Y \in \mathcal{K}(1), \phi \alpha^{\lambda} \in \mathfrak{F}_{\lambda}$, and $\psi \alpha^{\mu} \in \mathfrak{F}_{\mu}$, we have

$$
\begin{aligned}
\delta(B)(X, Y, \phi, \psi):= & (-1)^{|X||B|} \mathfrak{L}_{X}^{\lambda, \mu ; \nu} B(Y, \phi, \psi)-(-1)^{|Y|(|X|+|B|)} \mathfrak{L}_{Y}^{\lambda, \mu ; \nu} B(X, \phi, \psi) \\
& -B([X, Y], \phi, \psi) .
\end{aligned}
$$

Since $\delta(B)(X, Y, \phi, \psi)=B(X, \phi, \psi)=0$ for all $X \in \mathfrak{o s p}(1 \mid 2)$, we deduce that

$$
(-1)^{|X||B|} \mathfrak{L}_{X}^{\lambda, \mu ; \nu} B(Y, \phi, \psi)-B([X, Y], \phi, \psi)=0
$$

Thus, the operator B is $\mathfrak{o s p}(1 \mid 2)$-invariant; therefore it coincides with $\mathfrak{o s p}(1 \mid 2)$ invariant trilinear differential operators.

Now, clearly, the coboundary $\delta(T)$ has the form

$$
\delta(T)\left(X_{F}, X_{G}, \phi, \psi\right)=\sum_{\varepsilon, k_{1}, k_{2} k_{3}, k_{4}} \beta_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(|F|,|G|,|\phi|,|\psi|) A_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}(F, G, \phi, \psi),
$$

where $\varepsilon_{i}=0,1$.
3.5. Proof of Theorem 3.5. According to Lemma 3.1, any 2-cocycle of $\mathcal{K}(1)$ with coefficients in $\mathfrak{D}_{\lambda, \mu ; \nu}$ vanishing on $\mathfrak{o s p}(1 \mid 2)$ is $\mathfrak{o s p}(1 \mid 2)$-invariant. So, by Theorem 3.2, it is identically zero if $\nu-\mu-\lambda<3$ and expressed as in 3.2 for $\nu-\mu-\lambda \in \frac{1}{2} \mathbb{N}+3$.

For $\nu-\mu-\lambda \in \frac{1}{2} \mathbb{N}+3$, the proof of Theorem 3.5 consists in two steps. First, we investigate operators that belong to $Z^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$. The 2-cocycle condition imposes conditions on the coefficients $C_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$: we get a linear system for $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$. Second, taking into account these conditions, we eliminate all coefficients underlying coboundaries. Gluing these bits of information together we deduce that $\operatorname{dim} \mathrm{H}^{2}$ is equal to the number of independent coefficients $c_{\varepsilon}^{k_{1}, k_{2}, k_{3}, n}$ remaining in the expression of the 2-cocycle (3.2).
3.5.1. The case where $\nu-\mu-\lambda=3$. In this case, according to Theorem 3.2, the 2-cocycle 3.2 can be expressed as

$$
c\left(X_{F}, X_{G}, \phi, \psi\right)=c_{1,1,0,0}^{2,2,0,10} \gamma\left(X_{F}, X_{G}, \phi, \psi\right)
$$

where

$$
\gamma\left(X_{F}, X_{G}, \phi, \psi\right)=\bar{\eta}\left(F^{\prime \prime}\right) \bar{\eta}\left(G^{\prime \prime}\right) \phi \psi
$$

Therefore, by a direct computation, we can see that the 2-cocycle condition is always satisfied. Let us study the triviality of this 2 -cocycle. According to subsection 3.4 we can see that any coboundary $\delta(B) \in B^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$ can be expressed as

$$
\delta(B)=\delta(T)
$$

A direct computation confirms that the coefficients of $\delta(T)$ are expressed in terms of
$\beta_{1,1,0,0}^{2,2,0,10}=\mu\left(\mu+\frac{5}{2}\right) c_{1,0,1}^{2,0,1}+(-1)^{|G|} \lambda\left(\left(\lambda+\frac{5}{2}\right) c_{1,1,0}^{2,1,0}+2 \mu c_{1,1,0}^{2,0,1}\right)+3(-1)^{|F|} \lambda \mu c_{0,1,1}^{3,0,0}$.
So, for $(\lambda, \mu)=(0,0),\left(0,-\frac{5}{2}\right),\left(-\frac{5}{2}, 0\right)$, clearly the coefficients $c_{1,1,0,0}^{2,2,0,10}$ cannot be eliminated by adding a coboundary because $\beta_{1,1,0,0}^{2,2,0,10}$ is zero. Hence, the cohomology is one-dimensional.

For $(\lambda, \mu) \notin\left\{(0,0),\left(0,-\frac{5}{2}\right),\left(-\frac{5}{2}, 0\right)\right\}$, the coefficients $c_{1,1,0,0}^{2,2,0,10}$ can be eliminated by adding a coboundary since $\beta_{1,1,0,0}^{2,2,0,10}$ is nonzero. Hence, the cohomology is zerodimensional.
3.5.2. The case where $\nu-\mu-\lambda=\frac{7}{2}$. In this case, according to Theorem 3.2 the space of solutions is spanned by

$$
c_{1,1,1,0}^{2,2,0,11}, c_{1,0,0,0}^{2,3,0,11}
$$

Therefore, by a direct computation, we can see that the 2 -cocycle condition is always satisfied. Let us study the triviality of this 2 -cocycle. According to subsection 3.4 we can see that any coboundary $\delta(B) \in B^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$ can be expressed as

$$
\delta(B)=\delta(T)
$$

A direct computation confirms that the coefficients of $\delta(T)$ are expressed in terms of

$$
\begin{aligned}
\beta_{1,1,1,0}^{2,2,0,11}= & \mu c_{1,1,1}^{2,1,0}-2 \mu c_{1,1,1}^{2,0,1}-\frac{3}{2}(-1)^{|F|+|G|}\left(\left(\lambda+\frac{3}{2}\right) c_{0,1,0}^{3,1,0}+\mu c_{0,1,0}^{3,0,1}\right) \\
\beta_{1,0,0,0}^{2,3,0,11}= & (-1)^{|F|} \lambda\left(4 \mu c_{0,1,0}^{3,0,1}+\left(2 \lambda+\frac{5}{2}\right) c_{0,1,0}^{3,1,0}\right)+(-1)^{|F|+|G|} \mu\left(2 \mu+\frac{5}{2}\right) c_{0,0,1}^{3,0,1} \\
& +\frac{1}{3}(-1)^{|F|+|G|} \lambda \mu\left((4 \lambda+1) c_{1,1,1}^{2,1,0}+(4 \mu+1) c_{1,1,1}^{2,0,1}\right) .
\end{aligned}
$$

So, in the same way as before, for $(\lambda, \mu)=\left(-\frac{3}{2}, 0\right)$ (resp., $(\lambda, \mu)=(0,0),\left(0,-\frac{5}{4}\right)$, $\left.\left(-\frac{5}{4}, 0\right)\right)$, clearly the coefficients $c_{1,1,1,0}^{2,2,0,11}$ (resp., $c_{1,0,0,0}^{2,3,0,11}$) cannot be eliminated by adding a coboundary because $\beta_{1,1,1,0}^{2,2,0,11}$ (resp., $\beta_{1,0,0,0}^{2,3,0,11}$) is zero. Hence, the cohomology is one-dimensional.

For $(\lambda, \mu) \notin\left\{\left(-\frac{5}{4}, 0\right),\left(0,-\frac{5}{4}\right),\left(-\frac{3}{2}, 0\right),(0,0)\right\}$, the coefficients $c_{1,1,1,0}^{2,2,0,11}$ and $c_{1,0,0,0}^{2,3,0,11}$ can be eliminated by adding a coboundary since $\beta_{1,1,1,0}^{2,2,0,11}$ and $\beta_{1,0,0,0}^{2,3,011}$ are nonzero. Hence, the cohomology is zero-dimensional.
3.5.3. The case where $\nu-\mu-\lambda=4$. In this case, according to Theorem 3.2, the space of solutions is spanned by

$$
c_{1,1,0,0}^{3,2,0,12}, c_{1,0,1,0}^{2,3,0,12}, c_{1,1,0,0}^{2,2,1,12}
$$

Therefore, by a direct computation, we can see that the 2 -cocycle condition is always satisfied. Let us study the triviality of this 2 -cocycle. According to subsection 3.4 we can see that any coboundary $\delta(B) \in B^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$ can be
expressed as

$$
\delta(B)=\delta(T)
$$

A direct computation confirms that the coefficients of $\delta(T)$ are expressed in terms of

$$
\begin{aligned}
\beta_{1,1,0,0}^{2,2,0,12}=3(& -1)^{|F|} \lambda\left(\left(\mu+\frac{3}{2}\right) c_{0,1,1}^{3,0,1}-\left(\lambda+\frac{5}{2}\right) c_{0,1,1}^{3,1,0}\right)+2(-1)^{|G|} \lambda(2 \mu+1) c_{1,1,0}^{2,0,2} \\
& +\lambda(2 \lambda+5) c_{1,0,1}^{2,2,0}+2(\mu+2)\left(\mu+\frac{1}{2}\right) c_{1,0,1}^{2,0,2} \\
\beta_{1,0,1,0}^{2,3,0,12}=(& -1)^{|F|} \mu\left(c_{0,1,1}^{3,0,1}-\left(\lambda+\frac{1}{2}\right) c_{0,1,1}^{3,1,0}\right)+\frac{2}{3} \lambda \mu c_{1,0,1}^{2,2,0} \\
& \quad+\frac{1}{6}(-1)^{|G|}\left(2(\lambda+1)\left(\lambda+\frac{1}{2}\right) c_{1,1,0}^{2,2,0}+\mu(2 \mu+7) c_{1,1,0}^{2,0,2}\right) \\
\beta_{1,1,1,1}^{2,2,0,12}= & c_{1,0,1}^{2,0,2}-c_{1,0,1}^{2,2,0}-\frac{3}{4}(-1)^{|F|}\left((2 \lambda+1) c_{0,1,1}^{3,1,0}+(2 \mu+1) c_{0,1,1}^{3,0,1}\right)
\end{aligned}
$$

So, in the same way as before, for $(\lambda, \mu)=\left(-\frac{1}{2}, 0\right),(-1,0)$ (resp., for $(\lambda, \mu)=$ $\left.\left(0,-\frac{1}{2}\right),(0,-2)\right)$, clearly the coefficients $c_{1,0,1,0}^{2,3,0,12}$ (resp., $\left.c_{1,1,0,0}^{2,2,0,12}\right)$ cannot be eliminated by adding a coboundary because $\beta_{1,0,1,0}^{2,3,0,12}$ (resp., $\beta_{1,1,0,0}^{2,2,0,12}$) is zero; moreover, the coefficient $c_{1,1,1,1}^{2,2,0,12}$ can be eliminated by adding a coboundary since $\beta_{1,1,1,1}^{2,2,0,12}$ is nonzero. Hence, the cohomology is one-dimensional.

For $(\lambda, \mu) \notin\left\{\left(-\frac{1}{2}, 0\right),(-1,0),\left(0,-\frac{1}{2}\right),(0,-2)\right\}$, the coefficients $c_{1,1,1,1}^{2,2,0,1}, c_{1,0,1,0}^{2,3,0,12}$, and $c_{1,1,0,0}^{2,2,0,1}$ can be eliminated by adding a coboundary since $\beta_{1,1,1,1}^{2,2,0,12}, \beta_{1,0,1,0}^{2,3,0,12}$, and $\beta_{1,1,0,0}^{2,2,0,12}$ are nonzero. Hence, the cohomology is zero-dimensional.
3.5.4. The case where $\nu-\mu-\lambda=\frac{9}{2}$. In this case, a straightforward computation shows that the condition of 2-cocycle is equivalent to formulae (3.10) corresponding to $\mathfrak{o s p}(1 \mid 2)$-invariant operators together with the equation

$$
\lambda(-1)^{|F|+|G|} c_{1,1,1,0}^{2,2,1,13}+\mu c_{1,1,0,1}^{2,2,0,13}=0 .
$$

Thus, we have just proved that the coefficients of every 2-cocycle are expressed in terms of

$$
c_{0,1,1,1}^{3,2,0,13}, c_{1,1,0,1}^{2,2,0,13}, c_{1,1,1,0}^{3,2,0,13}, c_{1,1,1,0}^{2,2,1,13}
$$

On the other hand, according to subsection 3.4 , we can see that any coboundary $\delta(B) \in B^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$ can be expressed as

$$
\delta(B)=\delta(T)
$$

A direct computation confirms that the coefficients of $\delta(T)$ are expressed in terms of

$$
\begin{gathered}
\beta_{1,1,1,0}^{3,2,0,13}=2(-1)^{|F|+|G|} \mu(\lambda+1) c_{0,0,1}^{3,2,0}+(\lambda+2)\left(\lambda+\frac{5}{2}\right) c_{1,0,0}^{2,3,0}+(-1)^{|F|} \mu\left(\mu+\frac{1}{2}\right) c_{0,1,0}^{3,0,2} \\
+(-1)^{|G|} \mu\left(\frac{1}{3}(4 \mu+7) c_{1,1,1}^{2,0,2}+2(\lambda+1)\left(\lambda+\frac{5}{6}\right) c_{1,1,1}^{2,2,0}\right),
\end{gathered}
$$

$$
\begin{aligned}
\beta_{1,1,1,0}^{2,2,1,13}=- & 3\left(\lambda-\frac{3}{2}\right) c_{1,0,0}^{2,3,0}+(-1)^{|G|}\left((\lambda+1)(4 \mu+3) c_{1,1,1}^{2,2,0}-\mu\left(\mu+\frac{5}{2}\right) c_{1,1,1}^{2,1,1}\right) \\
& -3(-1)^{|F|+|G|}\left(\mu-\frac{3}{2}\right) c_{0,0,1}^{3,2,0} \\
\beta_{0,1,1,1}^{3,2,0,13}= & 4 c_{1,1,1}^{4,0,0}+\frac{1}{2}(-1)^{|F|} c_{0,0,1}^{3,2,0}+\frac{1}{2}(-1)^{|F|+|G|} c_{0,1,0}^{3,0,2} \\
\beta_{1,1,0,1}^{2,2,0,13}=- & -9(-1)^{|F|+|G|} c_{0,0,1}^{3,2,0}-3(-1)^{|F|} \lambda c_{0,1,0}^{3,0,2}-3(\mu+1) c_{1,0,0}^{2,1,2} \\
& +(-1)^{|G|}\left(4 \lambda(\mu+1) c_{1,1,1}^{2,0,2}-6(\lambda+1) c_{1,1,1}^{2,2,0}+\lambda\left(\lambda+\frac{5}{2}\right) c_{1,1,1}^{2,1,1}\right) .
\end{aligned}
$$

So, in the same way as before, for $(\lambda, \mu)=\left(-\frac{5}{2}, 0\right),(-2,0)$, clearly the coefficient $c_{1,1,1,0}^{3,2,0,13}$ cannot be eliminated by adding a coboundary because $\beta_{1,1,1,0}^{3,2,0,13}$ is zero; moreover, the coefficients $c_{1,1,1,0}^{2,2,13}, c_{0,1,1,1}^{3,2,0,13}$, and $c_{1,1,0,1}^{2,2,0,13}$ can be eliminated by adding a coboundary since $\beta_{1,1,1,0}^{2,2,13}, \beta_{0,1,1,1}^{3,2,0,13}$, and $\beta_{1,1,0,1}^{2,2,0,13}$ are nonzero. Hence, the cohomology is one-dimensional.

For $(\lambda, \mu) \notin\left\{\left(-\frac{5}{2}, 0\right),(-2,0)\right\}$, the coefficients $c_{1,1,1,0}^{3,2,0,13}, c_{1,1,1,0}^{2,2,1,13}, c_{0,1,1,1}^{3,2,0,13}$, and $c_{1,1,0,1}^{2,2,0,13}$ can be eliminated by adding a coboundary since $\beta_{1,1,1,0}^{3,2,0,13}, \beta_{1,1,1,0}^{2,2,1,13}, \beta_{0,1,1,1}^{3,2,0,13}$, and $\beta_{1,1,0,1}^{2,2,0,13}$ are nonzero. Hence, the cohomology is zero-dimensional.

This completes the proof of Theorem 3.5.
Conjecture 3.9. For $\nu-\mu-\lambda \geq 5$, the second differential $\mathfrak{o s p}(1 \mid 2)$-relative cohomology of $\mathcal{K}(1)$ with coefficients in $\mathfrak{D}_{\lambda, \mu ; \nu}$ is trivial.
3.6. Extensions of $\mathcal{K}(1)$. The theory of algebra extensions and their interpretation in terms of cohomology is well known; see, e.g., 9. The second cohomology space $\mathrm{H}^{2}(\mathfrak{g}, V)$ classifies the nontrivial extensions of the Lie superalgebra \mathfrak{g} by the module V :

$$
0 \longrightarrow V \longrightarrow \mathfrak{g}_{V} \longrightarrow \mathfrak{g} \longrightarrow 0
$$

the Lie structure on $\mathfrak{g}_{V}=\mathfrak{g} \oplus V$ being given by

$$
\left[\left(g_{1}, a\right),\left(g_{2}, b\right)\right]=\left(\left[g_{1}, g_{2}\right], g_{1} \cdot b-g_{2} \cdot a+c\left(g_{1}, g_{2}\right)\right)
$$

where c is a 2 -cocycle with values in V.
We consider a natural class of "non-central" extensions of $\mathcal{K}(1)$, namely extensions by the module $\mathfrak{D}_{\lambda, \mu ; \nu}$ of bilinear differential operators acting on weighted densities. We will be interested in the projectively invariant extensions which are given by projectively invariant 2 -cocycles c. The cocycle c in this case represents a nontrivial cohomology class of the second cohomology space $H_{\text {diff }}^{2}\left(\mathcal{K}(1), \mathfrak{o s p}(1 \mid 2) ; \mathfrak{D}_{\lambda, \mu ; \nu}\right)$. We mention that the same problem was considered in [13, 14]. The result is quite surprising:
Proposition 3.10. In any of these four cases:

- $\nu-\mu-\lambda=3$ and $(\lambda, \mu)=(0,0),\left(0,-\frac{5}{2}\right),\left(-\frac{5}{2}, 0\right)$,
- $\nu-\mu-\lambda=\frac{7}{2}$ and $(\lambda, \mu)=(0,0),\left(-\frac{3}{2}, 0\right),\left(0,-\frac{5}{4}\right),\left(-\frac{5}{4}, 0\right)$,
- $\nu-\mu-\lambda=4$ and $(\lambda, \mu)=(0,-2),\left(0,-\frac{1}{2}\right),\left(-\frac{1}{2}, 0\right),(-1,0)$,
- $\nu-\mu-\lambda=\frac{9}{2}$ and $(\lambda, \mu)=(-2,0),\left(-\frac{5}{2}, 0\right)$,
there exists a unique non-trivial extension of $\mathcal{K}(1)$ by $\mathfrak{D}_{\lambda, \mu ; \nu}$.

Acknowledgments

We would like to thank Nizar Ben Fraj and Sofiane Bouarroudj for their interest in this work.

References

[1] M. Ben Ammar and M. Boujelbene, $\mathfrak{s l}(2)$-trivial deformations of $\operatorname{Vect}_{\text {Pol }}(\mathbb{R})$-modules of symbols, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 065, 19 pp. MR 2470531
[2] M. Ben Ammar, A. Jabeur, and I. Safi, Cohomology of $\mathfrak{o s p}(1 \mid 2)$ acting on the space of bilinear differential operators on the superspace $\mathbb{R}^{1 \mid 1}$, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. $4,1250033,15 \mathrm{pp}$. MR 2917312.
[3] N. Ben Fraj, M. Abdaoui, and H. Raouafi, On osp(1|2)-relative cohomology of the Lie superalgebra of contact vector fields on $\mathbb{R}^{1 \mid 1}$, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 2, 1750022, 29 pp. MR 3599017
[4] S. Bouarroudj, Cohomology of the vector fields Lie algebras on $\mathbb{R P}^{1}$ acting on bilinear differential operators, Int. J. Geom. Methods Mod. Phys. 2 (2005), no. 1, 23-40. MR 2121353
[5] S. Bouarroudj, Projective and conformal Schwarzian derivatives and cohomology of Lie algebras vector fields related to differential operators, Int. J. Geom. Methods Mod. Phys. 3 (2006), no. 4, 667-696. MR 2237900
[6] S. Bouarroudj, On $\mathfrak{s l}(2)$-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. 14 (2007), no. 1, 112-127. MR 2287837
[7] S. Bouarroudj and V. Yu. Ovsienko, Three cocycles on Diff $\left(S^{1}\right)$ generalizing the Schwarzian derivative, Internat. Math. Res. Notices 1998, no. 1, 25-39. MR 1601874
[8] C. H. Conley, Conformal symbols and the action of contact vector fields over the superline, J. Reine Angew. Math. 633 (2009), 115-163. MR 2561198
[9] D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. MR 0874337
[10] C. Kassel, Quantum Groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995. MR 1321145
[11] P. B. A. Lecomte and V. Yu. Ovsienko, Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold, Compositio Math. 124 (2000), no. 1, 95-110. MR 1797655
[12] A. Nijenhuis and R. W. Richardson, Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175-179. MR 0204575
[13] V. Yu. Ovsienko and K. Rozhe, Extensions of the Virasoro group and the Virasoro algebra by means of modules of tensor densities on S^{1}, Funct. Anal. Appl. 30 (1996), no. 4, 290-291. MR 1444471
[14] V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New, Cambridge Tracts in Mathematics, 165, Cambridge University Press, Cambridge, 2005. MR 2177471.

Abderraouf Ghallabi ${ }^{\boxtimes}$

Université de Carthage, Institut Préparatoire aux Études D'ingénieurs de Nabeul, LR18ES45
Physique mathématique, modélisation quantique et conception mécanique, Tunisia
raoufghallabi@gmail.com
Meher Abdaoui
Department of Mathematics, Faculty of Sciences of Sfax, BP 802, 3038 Sfax, Tunisia
abdaoui.meher@gmail.com

Received: July 14, 2020
Accepted: May 26, 2021

[^0]: 2020 Mathematics Subject Classification. 53D55; 14F10; 17B10; 17B68.
 Key words and phrases. Invariant differential operator, superalgebra, cohomology.

