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BILINEAR DIFFERENTIAL OPERATORS AND
osp(1|2)-RELATIVE COHOMOLOGY ON R1|1

ABDERRAOUF GHALLABI AND MEHER ABDAOUI

Abstract. We consider the 1|1-dimensional real superspace R1|1 endowed
with its standard contact structure defined by the 1-form α. The conformal Lie
superalgebra K(1) acts on R1|1 as the Lie superalgebra of contact vector fields;
it contains the Möbius superalgebra osp(1|2). We classify osp(1|2)-invariant
superskew-symmetric binary differential operators from K(1)∧K(1) to Dλ,µ;ν
vanishing on osp(1|2), where Dλ,µ;ν is the superspace of bilinear differential
operators between the superspaces of weighted densities. This result allows us
to compute the second differential osp(1|2)-relative cohomology of K(1) with
coefficients in Dλ,µ;ν .

1. Introduction

The space of weighted densities with weight λ (or λ-densities) on R, denoted by
Fλ =

{
f(dx)λ | f ∈ C∞(R)

}
, λ ∈ R,

is the space of sections of the line bundle (T ∗R)⊗λ for positive integer λ. The Lie
algebra Vect(R) of vector fields XF = F d

dx on R, where F ∈ C∞(R), acts by the
Lie derivative. Alternatively, this action can be written as

XF · (fdxλ) = Lλ
XF

(f)(dx)λ, with Lλ
XF

(f) = Ff ′ + λF ′f,

where f ′ and F ′ are, respectively, df
dx and dF

dx . For (λ, µ, ν) ∈ R3, each bilinear
differential operator A from C∞(R) ⊗ C∞(R) to C∞(R) gives thus rise to a mor-
phism from Fλ ⊗Fµ to Fν defined by fdxλ ⊗gdxµ 7→ A(f⊗g)dxν . The Lie algebra
Vect(R) acts on the space Dλ,µ;ν of these differential operators by

XF ·A = Lν
XF

◦A−A ◦ L(λ,µ)
XF

,

where L(λ,µ)
XF

is the Lie derivative on Fλ ⊗ Fµ defined by the Leibniz rule

L
(λ,µ)
XF

(f ⊗ g) = Lλ
XF

(f) ⊗ g + f ⊗ Lµ
XF

(g).

If we restrict ourselves to the Lie subalgebra of Vect(R) generated by
{

d
dx , x

d
dx ,

x2 d
dx

}
, isomorphic to sl(2), we get a family of infinite-dimensional sl(2)-modules,
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still denoted by Dλ,µ;ν . Bouarroudj [6] computed H2
diff (Vect(R), sl(2); Dλ,µ), where

Hi
diff denotes the differential cohomology; that is, only cochains given by differential

operators are considered. These spaces appear naturally in the problem of describ-
ing the sl(2)-trivial deformations of the Vect(R)-module Sµ−λ =

⊕∞
k=0 Fµ−λ−k,

the space of symbols of differential operators (for example, see [1, 12]).
In this paper we study the simplest super analog of the problem solved in [6],

namely, we consider the superspace R1|1 equipped with the contact structure de-
termined by a 1-form α, and the Lie superalgebra K(1) of contact vector fields on
R1|1. We introduce the K(1)-module Fλ of λ-densities on R1|1 and the K(1)-module
of bilinear differential operators, Dλ,µ;ν = Homdiff(Fλ ⊗ Fµ,Fν), which are super
analogues of the spaces Fλ and Dλ,µ;ν , respectively. The Lie superalgebra osp(1|2),
a super analogue of sl(2), can be realized as a subalgebra of K(1). We classify all
osp(1|2)-invariant bilinear differential operators from K(1) to Dλ,µ;ν . We use the
result to compute H2

diff (K(1), osp(1|2);Dλ,µ;ν). We show that nonzero cohomology
H2

diff (K(1), osp(1|2);Dλ,µ;ν) only appears for resonant values of weights that satisfy
ν − µ − λ ∈ 1

2N + 3. These spaces allow us to classify the nontrivial projectively
invariant extensions of the Lie superalgebra K(1) by the module Dλ,µ;ν .

2. Definitions and notations

Recall that the superalgebra C∞(R1|1) of smooth function on the superspace
R1|1 consists of elements of the form

F (x, θ) = f0(x) + f1(x)θ,
where f0, f1 ∈ C∞(R), and where x is the even variable and θ is the odd variable
(θ2 = 0). Let |F | be the parity of a homogeneous function F . Let

Vect(R1|1) =
{
F0∂x + F1∂θ | Fi ∈ C∞(R1|1)

}
,

where ∂θ = ∂
∂θ and ∂x = ∂

∂x . Let K(1) be the Lie superalgebra of contact vector
fields on R1|1:

K(1) =
{
X ∈ Vect(R1|1) | there exists F ∈ C∞(R1|1) such that LX(α) = Fα

}
,

where LX is the Lie derivative along the vector field X and
α = dx+ θdθ.

Any contact vector field on R1|1 can be expressed as

XF = F∂x − 1
2(−1)|F |η(F )η,

where F ∈ C∞(R1|1) and η = ∂θ − θ∂x. The contact bracket is defined by
[XF , XG] = X{F, G}:

{F,G} = FG′ − F ′G− 1
2(−1)|F |η(F ) · η(G).

The orthosymplectic Lie superalgebra osp(1|2) can be realized as a subalgebra of
K(1):

osp(1|2) = Span(X1, Xx, Xx2 , Xxθ, Xθ).
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The space of even elements is isomorphic to sl(2), while the space of odd elements
is two-dimensional:

(osp(1|1))1 = Span(Xxθ, Xθ).

We define the space of λ-densities as

Fλ =
{
F (x, θ)αλ | F (x, θ) ∈ C∞(R1|1)

}
.

As a vector space, Fλ is isomorphic to C∞(R1|1), but the Lie derivative of the
density Gαλ along the vector field XF in K(1) is now

LXF
(Gαλ) = Lλ

XF
(G)αλ, with Lλ

XF
= XF + λF ′, λ ∈ R. (2.1)

A differential operator on R1|1 is an operator on C∞(R1|1) of the form

A =
M∑

k=0

∑
ε

ak,ε(x, θ)∂k
x∂

ε
θ , ε = 0, 1, M ∈ N.

Of course any differential operator defines a linear mapping Fαλ 7→ A(F )αµ from
Fλ to Fµ for any λ, µ ∈ R, thus the space of differential operators becomes a
K(1)-module denoted by Dλ,µ for the natural action

XF ·A = Lµ
XF

◦A− (−1)|A||F |A ◦ Lλ
XF
.

Similarly, we consider a family of K(1)-modules on the space Dλ,µ;ν of bilinear
differential operators A : Fλ ⊗ Fµ → Fν with the K(1)-action

XF ·A = Lν
XF

◦A− (−1)|A||F |A ◦ L
(λ,µ)
XF

,

where L
(λ,µ)
XF

is the Lie derivative on Fλ ⊗ Fµ defined by the Leibniz rule

L
(λ,µ)
XF

(H ⊗G) = Lλ
XF

(H) ⊗G+ (−1)|F ||H|H ⊗ Lµ
XF

(G).

Since η2 = −∂x and ∂θ = η − θη2, any differential operator A ∈ Dλ,µ can be
expressed in the form

A(Fαλ) =
ℓ∑

i=0
ai η

i(F )αµ, (2.2)

where the coefficients ai ∈ C∞(R1|1) and ℓ ∈ N.

3. The osp(1|2)-relative cohomology of K(1) acting on Dλ,µ;ν

Let us first recall some fundamental concepts from cohomology theory (see, e.g.,
[8, 9, 10]).
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3.1. Lie superalgebra cohomology. Let g = g0̄⊕g1̄ be a Lie superalgebra acting
on a superspace V = V0̄ ⊕ V1̄ and let h be a subalgebra of g. (If h is omitted, it is
assumed to be {0}.) The space of h-relative n-cochains of g with values in V is

Cn(g, h;V ) := Homh(Λn(g/h);V ).

The coboundary operator δn : Cn(g, h;V ) → Cn+1(g, h;V ) is an even map satisfying
δn ◦ δn−1 = 0 (see, for instance, [10]): for ϕ ∈ Cn(g, h;V ),

(δnϕ)(g0, . . . , gn) =
n∑

i=0
(−1)i(−1)|gi|(|ϕ|+|g0|+···+|gi−1|)giϕ(g0, . . . , î, . . . , gn)

+
∑

0≤i<j≤n

(−1)i+j(−1)|gi|(|g0|+···+|gi−1|)(−1)|gj |(|g0|+···+î+···+|gj−1|)

× ϕ([gi, gj ], g0, . . . , î, . . . , ĵ, . . . , gn).

The kernel of δn, denoted by Zn(g, h;V ), is the space of h-relative n-cocycles; among
them, the elements in the range of δn−1 are called h-relative n-coboundaries. We
denote by Bn(g, h;V ) the space of n-coboundaries.

By definition, the n-th h-relative cohomology space is the quotient space

Hn(g, h;V ) = Zn(g, h;V )/Bn(g, h;V ).

We can also define a g-action π on Cn(g, V ) by setting, for any g ∈ g,

(π(g)ϕ)(g1, . . . , gn)

= gϕ(g1, . . . , gn) −
n∑

i=1
(−1)|g|(|ϕ|+|g1|+···+|gi−1|)giϕ(g1, . . . , [g, gi], . . . , gn),

and a contraction operator ι(g) from Cn to Cn−1 by

(ι(g)ϕ)(g1, . . . , gn−1) = (−1)|g||ϕ|ϕ(g, g1, . . . , gn−1).

A direct computation gives the classical formula

π(g)ϕ = (δn−1 ◦ ι(g) + ι(g) ◦ δn)ϕ,

and thus δn(π(g)ϕ) = π(g)(δnϕ); that is, δn is a g-map. Note that Cn(g, h;V ) may
be viewed as the subspace of Cn(g, V ) annihilated by both ι(h) and π(h). We will
only need the formula of δn (which will be simply denoted by δ) in degrees 0, 1
and 2: for v ∈ C0(g, h;V ) = V h, δv(g) := (−1)|g||v|g · v, where

V h = {v ∈ V | h · v = 0 for all h ∈ h}.

3.2. osp(1|2)-invariant binary differential operators. The following steps to
compute the cohomology have intensively been used in [2, 4, 5, 6, 7, 11]. First, we
classify osp(1|2)-invariant differential operators, then we isolate among them those
that are 2-cocycles. To do that, we need the following lemma.
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Lemma 3.1. Any 2-cocycle vanishing on the subalgebra osp(1|2) of K(1) is osp(1|2)-
invariant.

Proof. For X ∈ osp(1|2), the 2-cocycle condition reads:

c([X,Y ], Z) − (−1)|Y ||Z|c([X,Z], Y ) = (−1)|X||c|Lλ,µ
X c(Y,Z)

for every Y, Z ∈ K(1). This relation is nothing but the osp(1|2)-invariance property
of the bilinear map c. □

As our 2-cocycles vanish on osp(1|2), we will investigate osp(1|2)-invariant super-
skew-symmetric binary differential operators that vanish on osp(1|2). Our first
main result is the following theorem.

Theorem 3.2. The space of superskew-symmetric bilinear differential operators
K(1)∧K(1) → Dλ,µ;ν which are osp(1|2)-invariant and vanish on osp(1|2) is purely
even if ν−µ−λ is integer and is purely odd if ν−µ−λ is semi-integer; moreover,
this space is:

(i) (p− 2)(4p− 9)-dimensional if (ν − µ− λ) = 2p− 2 and p ≥ 3;
(ii) (4p2 − 13p+ 11)-dimensional if (ν − µ− λ) = 2p− 1 and p ≥ 2;
(iii) (p− 2)(4p− 7)-dimensional if (ν − µ− λ) = 2p− 3

2 and p ≥ 3;
(iv) (4p2 − 11p+ 8)-dimensional if (ν − µ− λ) = 2p− 1

2 and p ≥ 2;
(v) zero-dimensional otherwise.

Proof. First, it is easy to see that, for the adjoint action, the Lie superalgebra K(1)
is isomorphic to F−1. So, any such a differential operator can be considered as a
4-ary differential operator c : F−1 ⊗ F−1 ⊗ Fλ ⊗ Fµ → Fν . Thus, by (2.2), we can
see that the operator c has the form

c(XF , XG, ϕ, ψ) =
∑

ε=(ε1,ε2,ε3,ε4)
0≤k1,k2,k3,k4≤M

ck1,k2,k3,k4
ε (x, θ, |F |, |G|, |ϕ|, |ψ|)

× ηε1(F (k1))ηε2(G(k2))ηε3(ϕ(k3))ηε4(ψ(k4)),

where εi = 0, 1, M ∈ N and (with F (ki) denoting the ki-th derivative of F by x)

ηεi(F (ki)) =

η(F (ki)) if εi = 1,

F (ki) otherwise.

Second, observe that, since the operator c vanishes on osp(1|2) (that is, it
vanishes when just one argument is from osp(1|2)), we have ck1,k2,k3,k4

ε = 0 for
ε1 + k1 ≤ 2 or ε2 + k2 ≤ 2. The invariance property of c with respect to
XH ∈ osp(1|2) reads:

Lλ,µ;ν
XH

c(XF , XG, ϕ, ψ) − (−1)|c||H|c([XH , XF ], XG, ϕ, ψ)

− (−1)|H|(|c|+|F |)c(XF , [XH , XG], ϕ, ψ) = 0. (3.1)
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By direct computation using (3.1) together with (2.1) and the graded Leibniz
formula

ηj ◦ F =
j∑

i=0

(
j
i

)
s

(−1)|F |(j−i)ηi(F )ηj−i,

with (
j
i

)
s

=


(

[ j
2 ]

[ i
2 ]

)
if i is even or j is odd,

0 otherwise,
we easily check that the invariant property of c with respect to the vector field Xx

yields
d

dx
ck1,k2,k3,k4

ε = 0 and η(ck1,k2,k3,k4
ε ) = 0.

Therefore, the coefficients ck1,k2,k3,k4
ε are functions of |F | and |G|. We also get

∥ε∥ + 2
4∑

i=1
ki = 2(ν − µ− λ) + 4, where ∥ε∥ =

4∑
i=1

εi.

So, the parameters λ, µ, and ν must satisfy 2(ν − µ − λ) + 4 = n, where n ∈ N.
The corresponding operator can be expressed as

c(XF , XG, ϕ, ψ) =
∑

ε,k1,k2,k3

ck1,k2,k3,n
ε (|F |, |G|, |ϕ|, |ψ|)Ak1,k2,k3,n

ε (F,G, ϕ, ψ),

(3.2)
where ε1 + k1 ≥ 3, ε2 + k2 ≥ 3, and

Ak1,k2,k3,n
ε (F,G, ϕ, ψ) = ηε1(F (k1))ηε2(G(k2))ηε3(ϕ(k3))ηε4(ψ( 1

2 (n−∥ε∥)−k1−k2−k3)).
We easily check that the operator c is homogeneous: c is even or odd according to
whether n is even or odd. Moreover, the superskew-symmetric condition

c(XF , XG, ϕ, ψ) = −(−1)|F ||G|c(XG, XF , ϕ, ψ)
leads to the following relation:
ck1,k2,k3,n

ε (|F |, |G|, |ϕ|, |ψ|) = −(−1)ε2.|F |+ε1.|G|+ε1.ε2ck2,k1,k3,n
ε2,ε1,ε3,ε4

(|G|, |F |, |ϕ|, |ψ|).
(3.3)

Second, we consider the invariance property with respect to Xx2 and Xxθ. Accord-
ing to the parity of n, we distinguish two cases.
The case where n is even.

In this case, the invariance property of c with respect to Xxθ reads:

Lλ,µ;ν
Xxθ

c(XF , XG, ϕ, ψ)−c([Xxθ, XF ], XG, ϕ, ψ)−(−1)|F |c(XF , [Xxθ, XG], ϕ, ψ) = 0.

Collecting the terms in xθAk1,k2,k3,n
ε (F,G, ϕ, ψ), we get

ck1,k2,k3,n
ε (|F |, |G|, |ϕ|, |ψ|) = (−1)ε1ck1,k2,k3,n

ε (|F | + 1, |G|, |ϕ|, |ψ|)
= (−1)ε1+ε2ck1,k2,k3,n

ε (|F |, |G| + 1, |ϕ|, |ψ|)
= (−1)ε1+ε2+ε3ck1,k2,k3,n

ε (|F |, |G|, |ϕ| + 1, |ψ|).
(3.4)
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According to formulae (3.3) and (3.4), we deduce that ck1,k1,k3,n
0,0,0,0 = ck1,k1,k3,n

0,0,1,1 =
0. The invariance property of c with respect to Xx2 reads:

Lλ,µ;ν
Xx2

c(XF , XG, ϕ, ψ) − c([Xx2 , XF ], XG, ϕ, ψ) − c(XF , [Xx2 , XG], ϕ, ψ) = 0.

Collecting the terms in θAk1,k2,k3,n
ε (F,G), we get with the help of (3.3) the following

conditions:
• Λn

k1,k2,k3−2µ+1c
k1,k2,k3,n
0,0,1,1 − (k1 − 2)ck1,k2,k3,n

1,0,1,0 − (−1)|F |(k2 − 2)ck1,k2,k3,n
0,1,1,0

+ (−1)|F |+|G|(k3 − 2)ck1,k2,k3+1,n
0,0,0,0 = 0, k1 + k2 + k3 ≤ n− 2

2 and k1 > k2 ≥ 3;

• Λn
k1,k2,k3+1c

k1,k2,k3,n
1,0,1,0 + (k1 + 1)ck1+1,k2,k3,n

0,0,1,1 + (−1)|F |(k2 − 2)ck1,k2,k3,n
1,1,1,1

− (−1)|F |+|G|(k3 + 1)ck1,k2,k3+1,n
1,0,0,1 = 0, k1 + k2 + k3 ≤ n− 4

2 and k1 ≥ 2, k2 ≥ 3;

• Λn
k1,k2,k3−2µ+2c

k1,k2,k3,n
1,1,1,1 + (k1 + 1)ck1+1,k2,k3,n

0,1,1,0 − (−1)|F |(k2 + 1)ck1,k2+1,k3,n
1,0,1,0

− (−1)|F |+|G|(k3 + 1)ck1,k2,k3+1,n
1,1,0,0 = 0, k1 + k2 + k3 ≤ n− 4

2 and k1 ≥ k2 ≥ 2;

• Λn
k1,k2,k3−2µ+1c

k1,k2,k3,n
0,1,0,1 − (k1 − 2)ck1,k2,k3,n

1,1,0,0 + (−1)|F |(k2 + 1)ck1,k2+1,k3,n
0,0,0,0

+ (−1)|F |+|G|(2λ+ k3)ck1,k2,k3,n
0,1,1,0 = 0, k1 + k2 + k3 ≤ n− 2

2 and k1 ≥ 3, k2 ≥ 2;

• Λn
k1,k2,k3

ck1,k2,k3,n
0,0,0,0 − (k1 − 2)ck1,k2,k3,n

1,0,0,1 − (−1)|F |(k2 − 2)ck1,k2,k3,n
0,1,0,1

− (−1)|F |+|G|(2λ+ k3)ck1,k2,k3,n
0,0,1,1 = 0, k1 + k2 + k3 ≤ n− 2

2 and k1 > k2 ≥ 3;

• Λn
k1,k2,k3+1c

k1,k2,k3,n
1,1,0,0 + (k1 + 1)ck1+1,k2,k3,n

0,1,0,1 − (−1)|F |(k2 + 1)ck1,k2+1,k3,n
1,0,0,1

− (−1)|F |+|G|(2λ+ k3)ck1,k2,k3,n
1,1,1,1 = 0, k1 + k2 + k3 ≤ n− 4

2 and k1 ≥ k2 ≥ 2,
(3.5)

where Λn
k1,k2,k3

= (−1)|F |+|G|+|ϕ|( n
2 − k1 − k2 − k3). For each n and any λ, we can

see, with the help of Maple, that the system (3.5) is linearly independent. Now
according to formula (3.3), we can see that all the coefficients ck1,k2,k3,n

ε can be
expressed in terms of 

ck1,k2,k3,n
1,0,1,0 , k1 ≥ 2 and k2 ≥ 3;

ck1,k2,k3,n
1,0,0,1 , k1 ≥ 2 and k2 ≥ 3;

ck1,k2,k3,n
0,0,0,0 , k1 > k2 ≥ 3;

ck1,k2,k3,n
0,0,1,1 , k1 > k2 ≥ 3;

ck1,k2,k3,n
1,1,0,0 , k1 ≥ k2 ≥ 2;

ck1,k2,k3,n
1,1,1,1 , k1 ≥ k2 ≥ 2.

(3.6)
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So, we deduce that the dimension of the space of solutions is equal to

#(the coefficients ck1,k2,k3,n
ε given by (3.6)) − # (equations given by (3.5)) .

We will need the following lemma.

Lemma 3.3.

(1) For n = 4p, the number of the coefficients ck1,k2,k3,n
ε given by (3.6) is

1
48 (4n3 − 93n2 + 758n− 335) and the number of equations given by (3.5) is
1

48 (4n3 − 109n2 + 1090n− 3472). Moreover, for generic λ and µ, the space
of osp(1|2)-invariant operators is spanned by (3.7) (see below).

(2) For n = 4p + 2, the number of the coefficients ck1,k2,k3,n
ε given by (3.6) is

1
12 (n3 − 24n2 + 194n− 528) and the number of equations given by (3.5) is
1

12 (n3 − 27n2 + 245n − 750). Moreover, for generic λ and µ, the space of
osp(1|2)-invariant operators is spanned by (3.8) (see below).

Proof. First, we can see, by a direct computation, that the number of the coeffi-
cients ck1,k2,k3,n

ε given by (3.6) and the number of equations given by (3.5) are as
in Lemma 3.3 for n = 4p and 4p+ 2.

Second, for k1 + k2 + k3 ≤ n
2 − 1 with k1 > k2 ≥ 3 and for generic λ, µ, it

follows from the first (resp., fifth) equation in (3.5) that the coefficients ck1,k2,k3,n
0,0,1,1(

resp., ck1,k2,k3,n
0,0,0,0 with k1+k2+k3 ≤ n

2 −1
)

are determined in terms of ck1,k2,k3,n
1,0,1,0 and

ck1,k2,k3,n
0,0,0,0

(
resp., ck1,k2,k3,n

1,0,0,1 and ck1,k2, n
2 −k1−k2,n

0,0,0,0
)
. Moreover, for k1+k2+k3 ≤ n

2 −1
with k1 ≥ 3, k2 ≥ 2 and for generic λ, µ, it follows from the fourth equation in
(3.5) that the coefficients ck2,k1,k3,n

1,0,0,1 can be expressed in terms of ck1,k2, n
2 −k1−k2,n

0,0,0,0 ,
ck2,k1,k3,n

1,0,1,0 and ck1,k2,k3,n
1,1,0,0 . Furthermore, for k1 + k2 + k3 ≤ n

2 − 2 with k1 ≥ k2 ≥ 2
and for generic λ, µ, it follows from the third (resp., sixth) equation in (3.5) that the
coefficients ck1,k2,k3,n

1,1,1,1
(
resp., ck1,k2,k3,n

1,1,0,0
)

are determined in terms of ck1,k2+1,k3,n
1,0,1,0 and

ck1,k2,k3+1,n
1,1,0,0

(
resp., ck1,k2, n

2 −k1−k2,n
0,0,0,0 , ck2,k1,k3,n

1,0,1,0 , and c
k1,k2, n

2 −k1−k2−1,n
1,1,0,0

)
. Finally,

for k1 + k2 + k3 ≤ n
2 − 2 with k1 ≥ 2, k2 ≥ 3, it follows from the second equation

in (3.5) that the coefficients ck1,k2,k3,n
1,0,1,0 can be expressed in terms of

c
k1,k2, n

2 −k1−k2,n
0,0,0,0 , c

k1,k2, n
2 −k1−k2−1,n

1,0,1,0 , and c
k1,k2, n

2 −k1−k2−1,n
1,1,0,0 .

Thus, we deduce, for generic λ and µ, that the space of osp(1|2)-invariant operators
has the following structure:
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(i) For n = 4p, it is 1
4 (n− 8)(n− 9)-dimensional and spanned by

c2,2,2p−5,n
1,1,0,0 ,

c3,2,2p−6,n
1,1,0,0 , c3,3,2p−7,n

1,1,0,0 ,

c4,2,2p−7,n
1,1,0,0 , c4,3,2p−8,n

1,1,0,0 , c4,4,2p−9,n
1,1,0,0 ,

...
c2p−4,2,1,n

1,1,0,0 , c2p−4,3,0,n
1,1,0,0 ,

c2p−3,2,0,n
1,1,0,0 ,

c4,3,2p−7,n
0,0,0,0 ,

c5,3,2p−8,n
0,0,0,0 , c5,4,2p−9,n

0,0,0,0 ,

c6,3,2p−9,n
0,0,0,0 , c6,4,2p−10,n

0,0,0,0 , c6,5,2p−11,n
0,0,0,0 ,

...
c2p−4,3,1,n

0,0,0,0 , c2p−4,4,0,n
0,0,0,0 ,

c2p−3,3,0,n
0,0,0,0 ,

and

c2,3,2p−6,n
1,0,1,0 , c2,4,2p−7,n

1,0,1,0 · · · , c2,2p−3,0,n
1,0,1,0 ,

c3,3,2p−7,n
1,0,1,0 , c3,4,2p−8,n

1,0,1,0 · · · , c3,2p−4,0,n
1,0,1,0 ,

...
c2p−5,3,1,n

1,0,1,0 , c2p−5,4,0,n
1,0,1,0 ,

c2p−4,3,0,n
1,0,1,0 .

(3.7)
(ii) For n = 4p+ 2, it is 1

4 (n2 − 17n+ 74)-dimensional and spanned by

c2,2,2p−4,n
1,1,0,0 ,

c3,2,2p−5,n
1,1,0,0 , c3,3,2p−6,n

1,1,0,0 ,

c4,2,2p−6,n
1,1,0,0 , c4,3,2p−7,n

1,1,0,0 , c4,4,2p−8,n
1,1,0,0 ,

...
c2p−3,2,1,n

1,1,0,0 , c2p−3,3,0,n
1,1,0,0 ,

c2p−2,2,0,n
1,1,0,0 ,

c4,3,2p−6,n
0,0,0,0 ,

c5,3,2p−7,n
0,0,0,0 , c5,4,2p−8,n

0,0,0,0 ,

c6,3,2p−8,n
0,0,0,0 , c6,4,2p−9,n

0,0,0,0 , c6,5,2p−10,n
0,0,0,0 ,

...
c2p−3,3,1,n

0,0,0,0 , c2p−3,4,0,n
0,0,0,0 ,

c2p−2,3,0,n
0,0,0,0 ,

and

c2,3,2p−5,n
1,0,1,0 , c2,4,2p−6,n

1,0,1,0 · · · , c2,2p−2,0,n
1,0,1,0 ,

c3,3,2p−6,n
1,0,1,0 , c3,4,2p−7,n

1,0,1,0 · · · , c3,2p−3,0,n
1,0,1,0 ,

...
c2p−4,3,1,n

1,0,1,0 , c2p−4,4,0,n
1,0,1,0 ,

c2p−3,3,0,n
1,0,1,0 .

(3.8)
□

The case where n is odd.
In this case, the invariance property of c with respect to Xxθ reads:

Lλ,µ;ν
Xxθ

c(XF , XG, ϕ, ψ)−c([Xxθ, XF ], XG, ϕ, ψ)−(−1)|F |c(XF , [Xxθ, XG], ϕ, ψ) = 0.
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Collecting the terms in xθAk1,k2,k3,n
ε (F,G, ϕ, ψ), we get

ck1,k2,k3,n
ε (|F |, |G|, |ϕ|, |ψ|) = (−1)ε2+ε3+ε4ck1,k2,k3,n

ε (|F | + 1, |G|, |ϕ|, |ψ|)
= (−1)ε3+ε4ck1,k2,k3,n

ε (|F |, |G| + 1, |ϕ|, |ψ|)
= (−1)ε4ck1,k2,k3,n

ε (|F |, |G|, |ϕ| + 1, |ψ|).
(3.9)

According to formulae (3.3) and (3.9), we deduce that ck1,k1,k3,n
0,0,1,0 = ck1,k1,k3,n

0,0,0,1 =
0. The invariance property of c with respect to Xx2 reads:

Lλ,µ;ν
Xx2

c(XF , XG, ϕ, ψ) − c([Xx2 , XF ], XG, ϕ, ψ) − c(XF , [Xx2 , XG], ϕ, ψ) = 0.

Collecting the terms in θAk1,k2,k3,n
ε (F,G), we get with the help of (3.3) the following

conditions:
• Λn

k1,k2,k3+ 1
2
ck1,k2,k3,n

0,0,1,0 − (k1 − 2)ck1,k2,k3,n
1,0,1,1 − (−1)|F |(k2 − 2)ck1,k2,k3,n

0,1,1,1

+ (−1)|F |+|G|(k3 + 1)ck1,k2,k3+1,n
0,0,0,1 = 0, k1 + k2 + k3 ≤ n− 3

2 and k1 > k2 ≥ 3;

• Λn
k1,k2,k3−2µ+ 3

2
ck1,k2,k3,n

0,1,1,1 + (k1 − 2)ck1,k2,k3,n
1,1,1,0 − (−1)|F |(k2 + 1)ck1,k2+1,k3,n

0,0,1,0

+ (−1)|F |+|G|(k3 + 1)ck1,k2,k3+1,n
0,1,0,0 = 0, k1 + k2 + k3 ≤ n− 3

2 and k1 ≥ 3, k2 ≥ 2;

• Λn
k1,k2,k3+ 3

2
ck1,k2,k3,n

1,1,1,0 − (k1 + 1)ck1+1,k2,k3,n
0,1,1,1 + (−1)|F |(k2 + 1)ck1,k2+1,k3,n

1,0,1,1

− (−1)|F |+|G|(k3 + 1)ck1,k2,k3+1,n
1,1,0,1 = 0, k1 + k2 + k3 ≤ n− 5

2 and k1 ≥ k2 ≥ 2;

• Λn
k1,k2,k3−2µ+ 1

2
ck1,k2,k3,n

0,0,0,1 + (k1 − 2)ck1,k2,k3,n
1,0,0,0 + (−1)|F |(k2 − 2)ck1,k2,k3,n

0,1,0,0

+ (−1)|F |+|G|(2λ+ k3)ck1,k2,k3,n
0,0,1,0 = 0, k1 + k2 + k3 ≤ n− 1

2 and k1 > k2 ≥ 3;

• Λn
k1,k2,k3−2µ+ 3

2
ck1,k2,k3,n

1,1,0,1 − (k1 + 1)ck1+1,k2,k3,n
0,1,0,0 + (−1)|F |(k2 + 1)ck1,k2+1,k3,n

1,0,0,0

+ (−1)|F |+|G|(2λ+ k3)ck1,k2,k3,n
1,1,1,0 = 0, k1 + k2 + k3 ≤ n− 3

2 and k1 ≥ k2 ≥ 2;

• Λn
k1,k2,k3+ 1

2
ck1,k2,k3,n

0,1,0,0 + (k1 − 2)ck1,k2,k3,n
1,1,0,1 − (−1)|F |(k2 + 1)ck1,k2+1,k3,n

0,0,0,1

− (−1)|F |+|G|(2λ+ k3)ck1,k2,k3,n
0,1,1,1 = 0, k1 + k2 + k3 ≤ n− 3

2 and k1 ≥ 3, k2 ≥ 2,
(3.10)

where Λn
k1,k2,k3

= (−1)|F |+|G|+|ϕ|( n
2 − k1 − k2 − k3). For each n and any λ, we can

see, with the help of Maple, that the system (3.10) is linearly independent. Now
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according to formulae (3.3), we can see that all the coefficients ck1,k2,k3,n
ε can be

expressed in terms of



ck1,k2,k3,n
1,0,0,0 , k1 ≥ 2 and k2 ≥ 3;

ck1,k2,k3,n
1,0,1,1 , k1 ≥ 2 and k2 ≥ 3;

ck1,k2,k3,n
0,0,1,0 , k1 > k2 ≥ 3;

ck1,k2,k3,n
0,0,0,1 , k1 > k2 ≥ 3;

ck1,k2,k3,n
1,1,1,0 , k1 ≥ k2 ≥ 2;

ck1,k2,k3,n
1,1,0,1 , k1 ≥ k2 ≥ 2.

(3.11)

So, we deduce that the dimension of the space of solutions is equal to

#(the coefficients ck1,k2,k3,n
ε given by (3.11)) − #(equations given by (3.10)).

We will need the following lemma.

Lemma 3.4.

(1) For n = 4p+ 1, the number of the coefficients ck1,k2,k3,n
ε given by (3.11) is

1
12 (n3 − 24n2 + 194n− 531) and the number of equations given by (3.10) is
1

12 (n3 − 27n2 + 245n − 747). Moreover, for generic λ and µ, the space of
osp(1|2)-invariant operators is spanned by (3.12) (see below).

(2) For n = 4p+ 3, the number of the coefficients ck1,k2,k3,n
ε given by (3.11) is

1
12 (n3 − 24n2 + 194n− 525) and the number of equations given by (3.10) is
1

12 (n3 − 27n2 + 245n − 747). Moreover, for generic λ and µ, the space of
osp(1|2)-invariant operators is spanned by (3.13) (see below).

Proof. First, we can see, by a direct computation, that the number of the coeffi-
cients ck1,k2,k3,n

ε given by (3.11) and the number of equations given by (3.10) are as
in Lemma 3.4 for n = 4p+ 1 and 4p+ 3. Moreover, in a similar way as in the proof
of Lemma 3.3, we deduce, for generic λ and µ, that the space of osp(1|2)-invariant
operators has the following structure:
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(i) For n = 4p+ 1, it is 1
4 (n− 8)(n− 9)-dimensional and spanned by

c2,2,2p−5,n
1,1,1,0 ,

c3,2,2p−6,n
1,1,1,0 , c3,3,2p−7,n

1,1,1,0 ,

c4,2,2p−7,n
1,1,1,0 , c4,3,2p−8,n

1,1,1,0 , c4,4,2p−9,n
1,1,1,0 ,

...
c2p−4,2,1,n

1,1,1,0 , c2p−4,3,0,n
1,1,1,0 ,

c2p−3,2,0,n
1,1,1,0 ,

c4,3,2p−7,n
0,0,1,0 ,

c5,3,2p−8,n
0,0,1,0 , c5,4,2p−9,n

0,0,1,0 ,

c6,3,2p−9,n
0,0,1,0 , c6,4,2p−10,n

0,0,1,0 , c6,5,2p−11,n
0,0,1,0 ,

...
c2p−4,3,1,n

0,0,1,0 , c2p−4,4,0,n
0,0,1,0 ,

c2p−3,3,0,n
0,0,1,0 ,

and

c2,3,2p−5,n
1,0,0,0 , c2,4,2p−6,n

1,0,0,0 · · · , c2,2p−2,0,n
1,0,0,0 ,

c3,3,2p−6,n
1,0,0,0 , c3,4,2p−7,n

1,0,0,0 · · · , c3,2p−3,0,n
1,0,0,0 ,

...
c2p−4,3,1,n

1,0,0,0 , c2p−4,4,0,n
1,0,0,0 ,

c2p−3,3,0,n
1,0,0,0 .

(3.12)
(ii) For n = 4p+ 3, it is 1

4 (n2 − 17n+ 74)-dimensional and spanned by

c2,2,2p−4,n
1,1,1,0 ,

c3,2,2p−5,n
1,1,1,0 , c3,3,2p−6,n

1,1,1,0 ,

c4,2,2p−6,n
1,1,1,0 , c4,3,2p−7,n

1,1,1,0 , c4,4,2p−8,n
1,1,1,0 ,

...
c2p−3,2,1,n

1,1,1,0 , c2p−3,3,0,n
1,1,1,0 ,

c2p−2,2,0,n
1,1,1,0 ,

c4,3,2p−6,n
0,0,1,0 ,

c5,3,2p−7,n
0,0,1,0 , c5,4,2p−8,n

0,0,1,0 ,

c6,3,2p−8,n
0,0,1,0 , c6,4,2p−9,n

0,0,1,0 , c6,5,2p−10,n
0,0,1,0 ,

...
c2p−3,3,1,n

0,0,1,0 , c2p−3,4,0,n
0,0,1,0 ,

c2p−2,3,0,n
0,0,1,0 ,

and

c2,3,2p−4,n
1,0,0,0 , c2,4,2p−5,n

1,0,0,0 · · · , c2,2p−1,0,n
1,0,0,0 ,

c3,3,2p−5,n
1,0,0,0 , c3,4,2p−6,n

1,0,0,0 · · · , c3,2p−2,0,n
1,0,0,0 ,

...
c2p−3,3,1,n

1,0,0,0 , c2p−3,4,0,n
1,0,0,0 ,

c2p−2,3,0,n
1,0,0,0 .

(3.13)

□

Now, using Lemma 3.3 and Lemma 3.4, we easily check that Theorem 3.2 is
proved. □
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3.3. The osp(1|2)-relative cohomology of K(1). In this subsection, we will com-
pute the second differential osp(1|2)-relative cohomology spaces H2

diff(K(1), osp(1|2);
Dλ,µ;ν). Our second main result is the following:

Theorem 3.5. For ν − µ − λ ≤ 9
2 , the space H2

diff(K(1), osp(1|2);Dλ,µ;ν) has the
following structure:

(i) If ν − µ− λ = 3, then

H2
diff(K(1), osp(1|2);Dλ,µ;ν) ≃

{
R if (λ, µ) ∈

{
(0, 0), (0,− 5

2 ), (− 5
2 , 0)

}
,

0 otherwise.

(ii) If ν − µ− λ = 7
2 , then

H2
diff(K(1), osp(1|2);Dλ,µ;ν) ≃

R if (λ, µ) ∈

{
(0, 0), ( −3

2 , 0),
(− 5

4 , 0), (0,− 5
4 )

}
,

0 otherwise.
(iii) If ν − µ− λ = 4, then

H2
diff(K(1), osp(1|2);Dλ,µ;ν) ≃

R if (λ, µ) ∈

{
(0,−2), (0,− 1

2 ),
(−1, 0), (− 1

2 , 0)

}
,

0 otherwise.

(iv) If ν − µ− λ = 9
2 , then

H2
diff(K(1), osp(1|2);Dλ,µ;ν) ≃

{
R if (λ, µ) ∈

{
(−2, 0), (− 5

2 , 0)
}
,

0 otherwise.

Remark 3.6. H1
diff(K(1), osp(1|2);Dλ,µ;ν) has been computed in [3].

The proof of Theorem 3.5 will be the subject of subsection 3.5. In fact, we first
need the description of osp(1|2)-invariant trilinear operators, from F−1 ⊗ Fλ ⊗ Fµ

to Fλ+µ+k−1.

3.4. osp(1|2)-invariant trilinear differential operators.

Proposition 3.7 ([3]). The space of trilinear differential operators T : K(1)⊗Fλ ⊗
Fµ → Fλ+µ+k−1 which are osp(1|2)-invariant and vanish on osp(1|2) is purely even
if ν−µ−λ is integer and is purely odd if ν−µ−λ is semi-integer; moreover, it is:

(i) 2(ν − µ− λ− 1)-dimensional if 2(ν − µ− λ) ∈ N + 3, generated by

c
k−1

2 ,0,0
1,0,0 , c

k−3
2 ,1,0

1,0,0 , c
k−5

2 ,2,0
1,0,0 , . . . , c

2, k−5
2 ,0

1,0,0 ,

c
k−3

2 ,0,0
1,1,1 , c

k−5
2 ,1,0

1,1,1 , c
k−7

2 ,2,0
1,1,1 , . . . , c

2, k−7
2 ,0

1,1,1 if ν − µ− λ is semi-integer;
and
c

k
2 −1,0,0
1,1,0 , c

k
2 −2,0,1
1,1,0 , c

k
2 −3,0,2
1,1,0 , . . . , c

2,0, k
2 −3

1,1,0 ,

c
k
2 −1,0,0
1,0,1 , c

k
2 −2,1,0
1,0,1 , c

k
2 −3,2,0
1,0,1 , . . . , c

2, k
2 −3,0

1,0,1 if ν − µ− λ is integer.
(ii) zero-dimensional otherwise.
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In order to prove Theorem 3.5, we will study properties of the coboundaries.

Lemma 3.8. Let B : K(1) → Dλ,µ;ν be an operator vanishing on osp(1|2). If
δ(B) belongs to B2(K(1), osp(1|2);Dλ,µ;ν), then B is an osp(1|2)-invariant trilinear
differential operator.

Proof. For all X, Y ∈ K(1), ϕαλ ∈ Fλ, and ψαµ ∈ Fµ, we have

δ(B)(X,Y, ϕ, ψ) := (−1)|X||B|Lλ,µ;ν
X B(Y, ϕ, ψ) − (−1)|Y |(|X|+|B|)Lλ,µ;ν

Y B(X,ϕ, ψ)
−B([X,Y ], ϕ, ψ).

Since δ(B)(X,Y, ϕ, ψ) = B(X,ϕ, ψ) = 0 for all X ∈ osp(1|2), we deduce that

(−1)|X||B|Lλ,µ;ν
X B(Y, ϕ, ψ) −B([X,Y ], ϕ, ψ) = 0.

Thus, the operator B is osp(1|2)-invariant; therefore it coincides with osp(1|2)-
invariant trilinear differential operators. □

Now, clearly, the coboundary δ(T ) has the form

δ(T )(XF , XG, ϕ, ψ) =
∑

ε,k1,k2k3,k4

βk1,k2,k3,n
ε (|F |, |G|, |ϕ|, |ψ|)Ak1,k2,k3,n

ε (F,G, ϕ, ψ),

where εi = 0, 1.

3.5. Proof of Theorem 3.5. According to Lemma 3.1, any 2-cocycle of K(1)
with coefficients in Dλ,µ;ν vanishing on osp(1|2) is osp(1|2)-invariant. So, by The-
orem 3.2, it is identically zero if ν − µ − λ < 3 and expressed as in (3.2) for
ν − µ− λ ∈ 1

2N + 3.
For ν − µ − λ ∈ 1

2N + 3, the proof of Theorem 3.5 consists in two steps. First,
we investigate operators that belong to Z2(K(1), osp(1|2);Dλ,µ;ν). The 2-cocycle
condition imposes conditions on the coefficients ck1,k2,k3,n

ε : we get a linear system
for ck1,k2,k3,n

ε . Second, taking into account these conditions, we eliminate all co-
efficients underlying coboundaries. Gluing these bits of information together we
deduce that dim H2 is equal to the number of independent coefficients ck1,k2,k3,n

ε

remaining in the expression of the 2-cocycle (3.2).

3.5.1. The case where ν − µ − λ = 3. In this case, according to Theorem 3.2, the
2-cocycle (3.2) can be expressed as

c(XF , XG, ϕ, ψ) = c2,2,0,10
1,1,0,0 γ(XF , XG, ϕ, ψ),

where
γ(XF , XG, ϕ, ψ) = η(F ′′)η(G′′)ϕψ.

Therefore, by a direct computation, we can see that the 2-cocycle condition is
always satisfied. Let us study the triviality of this 2-cocycle. According to subsec-
tion 3.4, we can see that any coboundary δ(B) ∈ B2(K(1), osp(1|2);Dλ,µ;ν) can be
expressed as

δ(B) = δ(T ).
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A direct computation confirms that the coefficients of δ(T ) are expressed in terms
of

β2,2,0,10
1,1,0,0 = µ

(
µ+ 5

2
)
c2,0,1

1,0,1 + (−1)|G|λ
((
λ+ 5

2
)
c2,1,0

1,1,0 + 2µc2,0,1
1,1,0

)
+ 3(−1)|F |λµc3,0,0

0,1,1.

So, for (λ, µ) = (0, 0), (0,− 5
2 ), (− 5

2 , 0), clearly the coefficients c2,2,0,10
1,1,0,0 cannot be

eliminated by adding a coboundary because β2,2,0,10
1,1,0,0 is zero. Hence, the cohomology

is one-dimensional.
For (λ, µ) /∈

{
(0, 0), (0,− 5

2 ), (− 5
2 , 0)

}
, the coefficients c2,2,0,10

1,1,0,0 can be eliminated
by adding a coboundary since β2,2,0,10

1,1,0,0 is nonzero. Hence, the cohomology is zero-
dimensional.

3.5.2. The case where ν − µ− λ = 7
2 . In this case, according to Theorem 3.2, the

space of solutions is spanned by

c2,2,0,11
1,1,1,0 , c

2,3,0,11
1,0,0,0 .

Therefore, by a direct computation, we can see that the 2-cocycle condition is
always satisfied. Let us study the triviality of this 2-cocycle. According to subsec-
tion 3.4, we can see that any coboundary δ(B) ∈ B2(K(1), osp(1|2);Dλ,µ;ν) can be
expressed as

δ(B) = δ(T ).
A direct computation confirms that the coefficients of δ(T ) are expressed in terms
of

β2,2,0,11
1,1,1,0 = µc2,1,0

1,1,1 − 2µc2,0,1
1,1,1 − 3

2 (−1)|F |+|G|
((
λ+ 3

2
)
c3,1,0

0,1,0 + µc3,0,1
0,1,0

)
,

β2,3,0,11
1,0,0,0 = (−1)|F |λ

(
4µc3,0,1

0,1,0 +
(
2λ+ 5

2
)
c3,1,0

0,1,0

)
+ (−1)|F |+|G|µ

(
2µ+ 5

2
)
c3,0,1

0,0,1

+ 1
3 (−1)|F |+|G|λµ

(
(4λ+ 1)c2,1,0

1,1,1 + (4µ+ 1)c2,0,1
1,1,1

)
.

So, in the same way as before, for (λ, µ) = (− 3
2 , 0) (resp., (λ, µ) = (0, 0), (0,− 5

4 ),
(− 5

4 , 0)), clearly the coefficients c2,2,0,11
1,1,1,0 (resp., c2,3,0,11

1,0,0,0 ) cannot be eliminated by
adding a coboundary because β2,2,0,11

1,1,1,0 (resp., β2,3,0,11
1,0,0,0 ) is zero. Hence, the coho-

mology is one-dimensional.
For (λ, µ) /∈

{
(− 5

4 , 0), (0,− 5
4 ), (− 3

2 , 0), (0, 0)
}

, the coefficients c2,2,0,11
1,1,1,0 and c2,3,0,11

1,0,0,0
can be eliminated by adding a coboundary since β2,2,0,11

1,1,1,0 and β2,3,0,11
1,0,0,0 are nonzero.

Hence, the cohomology is zero-dimensional.

3.5.3. The case where ν − µ − λ = 4. In this case, according to Theorem 3.2, the
space of solutions is spanned by

c3,2,0,12
1,1,0,0 , c

2,3,0,12
1,0,1,0 , c

2,2,1,12
1,1,0,0 .

Therefore, by a direct computation, we can see that the 2-cocycle condition is
always satisfied. Let us study the triviality of this 2-cocycle. According to subsec-
tion 3.4, we can see that any coboundary δ(B) ∈ B2(K(1), osp(1|2);Dλ,µ;ν) can be
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expressed as
δ(B) = δ(T ).

A direct computation confirms that the coefficients of δ(T ) are expressed in terms
of

β2,2,0,12
1,1,0,0 = 3(−1)|F |λ

(
(µ+ 3

2 )c3,0,1
0,1,1 − (λ+ 5

2 )c3,1,0
0,1,1

)
+ 2(−1)|G|λ(2µ+ 1)c2,0,2

1,1,0

+ λ(2λ+ 5)c2,2,0
1,0,1 + 2(µ+ 2)(µ+ 1

2 )c2,0,2
1,0,1,

β2,3,0,12
1,0,1,0 = (−1)|F |µ

(
c3,0,1

0,1,1 − (λ+ 1
2 )c3,1,0

0,1,1

)
+ 2

3λµc
2,2,0
1,0,1

+ 1
6 (−1)|G|

(
2(λ+ 1)(λ+ 1

2 )c2,2,0
1,1,0 + µ(2µ+ 7)c2,0,2

1,1,0

)
,

β2,2,0,12
1,1,1,1 = c2,0,2

1,0,1 − c2,2,0
1,0,1 − 3

4 (−1)|F |
(

(2λ+ 1)c3,1,0
0,1,1 + (2µ+ 1)c3,0,1

0,1,1

)
.

So, in the same way as before, for (λ, µ) = (− 1
2 , 0), (−1, 0) (resp., for (λ, µ) =

(0,− 1
2 ), (0,−2)), clearly the coefficients c2,3,0,12

1,0,1,0 (resp., c2,2,0,12
1,1,0,0 ) cannot be elimi-

nated by adding a coboundary because β2,3,0,12
1,0,1,0 (resp., β2,2,0,12

1,1,0,0 ) is zero; moreover,
the coefficient c2,2,0,12

1,1,1,1 can be eliminated by adding a coboundary since β2,2,0,12
1,1,1,1 is

nonzero. Hence, the cohomology is one-dimensional.
For (λ, µ) /∈

{
(− 1

2 , 0), (−1, 0), (0,− 1
2 ), (0,−2)

}
, the coefficients c2,2,0,12

1,1,1,1 , c2,3,0,12
1,0,1,0 ,

and c2,2,0,12
1,1,0,0 can be eliminated by adding a coboundary since β2,2,0,12

1,1,1,1 , β2,3,0,12
1,0,1,0 , and

β2,2,0,12
1,1,0,0 are nonzero. Hence, the cohomology is zero-dimensional.

3.5.4. The case where ν − µ− λ = 9
2 . In this case, a straightforward computation

shows that the condition of 2-cocycle is equivalent to formulae (3.10) corresponding
to osp(1|2)-invariant operators together with the equation

λ(−1)|F |+|G|c2,2,1,13
1,1,1,0 + µc2,2,0,13

1,1,0,1 = 0.

Thus, we have just proved that the coefficients of every 2-cocycle are expressed in
terms of

c3,2,0,13
0,1,1,1 , c

2,2,0,13
1,1,0,1 , c

3,2,0,13
1,1,1,0 , c

2,2,1,13
1,1,1,0 .

On the other hand, according to subsection 3.4, we can see that any coboundary
δ(B) ∈ B2(K(1), osp(1|2);Dλ,µ;ν) can be expressed as

δ(B) = δ(T ).

A direct computation confirms that the coefficients of δ(T ) are expressed in terms
of

β3,2,0,13
1,1,1,0 = 2(−1)|F |+|G|µ(λ+ 1)c3,2,0

0,0,1 + (λ+ 2)(λ+ 5
2 )c2,3,0

1,0,0 + (−1)|F |µ(µ+ 1
2 )c3,0,2

0,1,0

+ (−1)|G|µ
(

1
3 (4µ+ 7)c2,0,2

1,1,1 + 2(λ+ 1)(λ+ 5
6 )c2,2,0

1,1,1

)
,
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β2,2,1,13
1,1,1,0 = −3(λ− 3

2 )c2,3,0
1,0,0 + (−1)|G|

(
(λ+ 1)(4µ+ 3)c2,2,0

1,1,1 − µ(µ+ 5
2 )c2,1,1

1,1,1

)
− 3(−1)|F |+|G|(µ− 3

2 )c3,2,0
0,0,1,

β3,2,0,13
0,1,1,1 = 4c4,0,0

1,1,1 + 1
2 (−1)|F |c3,2,0

0,0,1 + 1
2 (−1)|F |+|G|c3,0,2

0,1,0,

β2,2,0,13
1,1,0,1 = −9(−1)|F |+|G|c3,2,0

0,0,1 − 3(−1)|F |λc3,0,2
0,1,0 − 3(µ+ 1)c2,1,2

1,0,0

+ (−1)|G|
(

4λ(µ+ 1)c2,0,2
1,1,1 − 6(λ+ 1)c2,2,0

1,1,1 + λ(λ+ 5
2 )c2,1,1

1,1,1

)
.

So, in the same way as before, for (λ, µ) = (− 5
2 , 0), (−2, 0), clearly the coef-

ficient c3,2,0,13
1,1,1,0 cannot be eliminated by adding a coboundary because β3,2,0,13

1,1,1,0 is
zero; moreover, the coefficients c2,2,1,13

1,1,1,0 , c3,2,0,13
0,1,1,1 , and c2,2,0,13

1,1,0,1 can be eliminated by
adding a coboundary since β2,2,1,13

1,1,1,0 , β3,2,0,13
0,1,1,1 , and β2,2,0,13

1,1,0,1 are nonzero. Hence, the
cohomology is one-dimensional.

For (λ, µ) /∈
{

(− 5
2 , 0), (−2, 0)

}
, the coefficients c3,2,0,13

1,1,1,0 , c2,2,1,13
1,1,1,0 , c3,2,0,13

0,1,1,1 , and
c2,2,0,13

1,1,0,1 can be eliminated by adding a coboundary since β3,2,0,13
1,1,1,0 , β2,2,1,13

1,1,1,0 , β3,2,0,13
0,1,1,1 ,

and β2,2,0,13
1,1,0,1 are nonzero. Hence, the cohomology is zero-dimensional.

This completes the proof of Theorem 3.5. □

Conjecture 3.9. For ν−µ−λ ≥ 5, the second differential osp(1|2)-relative coho-
mology of K(1) with coefficients in Dλ,µ;ν is trivial.
3.6. Extensions of K(1). The theory of algebra extensions and their interpreta-
tion in terms of cohomology is well known; see, e.g., [9]. The second cohomology
space H2(g, V ) classifies the nontrivial extensions of the Lie superalgebra g by the
module V :

0 −→ V −→ gV −→ g −→ 0,
the Lie structure on gV = g ⊕ V being given by

[(g1, a), (g2, b)] = ([g1, g2], g1.b− g2.a+ c(g1, g2)),
where c is a 2-cocycle with values in V .

We consider a natural class of “non-central” extensions of K(1), namely exten-
sions by the module Dλ,µ;ν of bilinear differential operators acting on weighted den-
sities. We will be interested in the projectively invariant extensions which are given
by projectively invariant 2-cocycles c. The cocycle c in this case represents a non-
trivial cohomology class of the second cohomology space H2

diff(K(1), osp(1|2);Dλ,µ;ν).
We mention that the same problem was considered in [13, 14]. The result is quite
surprising:
Proposition 3.10. In any of these four cases:

• ν − µ− λ = 3 and (λ, µ) = (0, 0), (0,− 5
2 ), (− 5

2 , 0),
• ν − µ− λ = 7

2 and (λ, µ) = (0, 0), (− 3
2 , 0), (0,− 5

4 ), (− 5
4 , 0),

• ν − µ− λ = 4 and (λ, µ) = (0,−2), (0,− 1
2 ), (− 1

2 , 0), (−1, 0),
• ν − µ− λ = 9

2 and (λ, µ) = (−2, 0), (− 5
2 , 0),

there exists a unique non-trivial extension of K(1) by Dλ,µ;ν .
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