Orlicz version of mixed moment tensors

Authors

  • Chang-Jian Zhao Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China

DOI:

https://doi.org/10.33044/revuma.2181

Abstract

Our main aim is to generalize the moment tensors $\mathbf{\Psi}_{r}(K)$ to the Orlicz space. Under the framework of the Orlicz–Brunn–Minkowski theory, we introduce a new affine geometric quantity $\mathbf{\Psi}_{\psi,r}(K,L)$, and call it Orlicz mixed moment tensors of convex bodies $K$ and $L$. The fundamental notions and properties of the moment tensors as well as related Minkowski and Brunn–Minkowski inequalities are then extended to the Orlicz setting. Diverse inequalities for certain new $L_p$-mixed moment tensors $\mathbf{\Psi}_{p,r}(K,L)$ are also derived. The new Orlicz inequalities in special cases yield the Orlicz–Minkowski and the Orlicz–Brunn–Minkowski inequalities, respectively.

Downloads

Download data is not yet available.

References

A. D. Aleksandrov, On the theory of mixed volumes. I. Extension of certain concepts in the theory of convex bodies, Mat. Sb. (N.S.) 2 (1937), 947–972 (in Russian).

Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundlehren der mathematischen Wissenschaften, 285, Springer-Verlag, Berlin, 1988. MR 0936419.

H. Busemann, Convex Surfaces, Interscience Tracts in Pure and Applied Mathematics, no. 6, Interscience, New York, 1958. MR 0105155.

W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16 (1938), no. 3, 1–31.

Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 0141003.

R. J. Gardner, Geometric Tomography, second edition, Encyclopedia of Mathematics and its Applications, 58, Cambridge University Press, New York, 2006. MR 2251886.

R. J. Gardner, D. Hug, and W. Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differential Geom. 97 (2014), no. 3, 427–476. MR 3263511.

C. Haberl, E. Lutwak, D. Yang, and G. Zhang., The even Orlicz Minkowski problem, Adv. Math. 224 (2010), no. 6, 2485–2510. MR 2652213.

C. Haberl and L. Parapatits, The centro-affine Hadwiger theorem, J. Amer. Math. Soc. 27 (2014), no. 3, 685–705. MR 3194492.

C. Haberl and F. E. Schuster, Asymmetric affine $L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), no. 3, 641–658. MR 2530600.

C. Haberl and F. E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028.

C. Haberl, F. E. Schuster, and J. Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann. 352 (2012), no. 3, 517–542. MR 2885586.

J. Hoffmann-Jørgensen, Probability with a View Toward Statistics. Vol. I, Chapman & Hall Probability Series, Chapman & Hall, New York, 1994. MR 1278485.

Q. Huang and B. He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom. 48 (2012), no. 2, 281–297. MR 2946448.

M. A. Krasnoselʹskiĭ and Ja. B. Rutickiĭ, Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen, 1961. MR 0126722.

J. Li and D. Ma, Laplace transforms and valuations, J. Funct. Anal. 272 (2017), no. 2, 738–758. MR 3571907.

Y. Lin, Affine Orlicz Pólya-Szegö principle for log-concave functions, J. Funct. Anal. 273 (2017), no. 10, 3295–3326. MR 3695895.

M. Ludwig and M. Reitzner, A classification of ${rm SL}(n)$ invariant valuations, Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. MR 2680490.

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704.

E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681.

E. Lutwak, D. Yang, and G. Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023.

E. Lutwak, D. Yang, and G. Zhang, Sharp affine $L_p$ Sobolev inequalities, J. Differential Geom. 62 (2002), no. 1, 17–38. MR 1987375.

E. Lutwak, D. Yang, and G. Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4359–4370. MR 2067123.

E. Lutwak, D. Yang, and G. Zhang, $L_p$ John ellipsoids, Proc. London Math. Soc. (3) 90 (2005), no. 2, 497–520. MR 2142136.

E. Lutwak, D. Yang, and G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), no. 1, 220–242. MR 2563216.

E. Lutwak, D. Yang, and G. Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), no. 2, 365–387. MR 2652465.

E. Lutwak, D. Yang, and G. Zhang, The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. in Appl. Math. 48 (2012), no. 2, 407–413. MR 2873885.

L. Parapatits, ${rm SL}(n)$-covariant $L_p$-Minkowski valuations, J. Lond. Math. Soc. (2) 89 (2014), no. 2, 397–414. MR 3188625.

L. Parapatits, ${rm SL}(n)$-contravariant $L_p$-Minkowski valuations, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1195–1211. MR 3145728.

M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991. MR 1113700.

R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, second expanded edition, Encyclopedia of Mathematics and its Applications, 151, Cambridge University Press, Cambridge, 2014. MR 3155183.

C. Schütt and E. Werner, Surface bodies and $p$-affine surface area, Adv. Math. 187 (2004), no. 1, 98–145. MR 2074173.

E. M. Werner, Rényi divergence and $L_p$-affine surface area for convex bodies, Adv. Math. 230 (2012), no. 3, 1040–1059. MR 2921171.

E. Werner and D. Ye, New $L_p$ affine isoperimetric inequalities, Adv. Math. 218 (2008), no. 3, 762–780. MR 2414321.

D. Xi, H. Jin, and G. Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math. 260 (2014), 350–374. MR 3209355.

C.-J. Zhao, Orlicz dual mixed volumes, Results Math. 68 (2015), no. 1-2, 93–104. MR 3391494.

C.-J. Zhao, Orlicz dual affine quermassintegrals, Forum Math. 30 (2018), no. 4, 929–945. MR 3824799.

C.-J. Zhao, Orlicz-Brunn-Minkowski inequality for radial Blaschke-Minkowski homomorphisms, Quaest. Math. 41 (2018), no. 7, 937–950. MR 3882049.

C.-J. Zhao, Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes, J. Funct. Spaces 2018, Art. ID 9752178, 16 pp. MR 3859786.

Downloads

Published

2022-12-13

Issue

Section

Article