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Vol. 63, No. 2, 2022, Pages 475–488
Published online: December 13, 2022
https://doi.org/10.33044/revuma.2181

ORLICZ VERSION OF MIXED MOMENT TENSORS

CHANG-JIAN ZHAO

Abstract. Our main aim is to generalize the moment tensors Ψr(K) to the
Orlicz space. Under the framework of the Orlicz–Brunn–Minkowski theory,
we introduce a new affine geometric quantity Ψψ,r(K, L), and call it Orlicz
mixed moment tensors of convex bodies K and L. The fundamental no-
tions and properties of the moment tensors as well as related Minkowski and
Brunn–Minkowski inequalities are then extended to the Orlicz setting. Diverse
inequalities for certain new Lp-mixed moment tensors Ψp,r(K, L) are also de-
rived. The new Orlicz inequalities in special cases yield the Orlicz–Minkowski
and the Orlicz–Brunn–Minkowski inequalities, respectively.

1. Introduction

One of the most important operations in geometry is vector addition. As an
operation between sets K and L, defined by

K + L = {x+ y : x ∈ K, y ∈ L},
it is usually called Minkowski addition, which, combined with volume, plays an
important role in the Brunn–Minkowski theory. If K is a nonempty closed (not
necessarily bounded) convex set in Rn, then

h(K,x) = max{x · y : y ∈ K}
for x ∈ Rn defines the support function h(K,x) of K. A nonempty closed convex
set is uniquely determined by its support function. Since about 1970, the theory
has been extended to the Lp-Brunn–Minkowski theory. A set operation called
Lp addition, denoted by +p, was defined by Firey [5]:

h(K +p L, x)p = h(K,x)p + h(L, x)p, x ∈ Rn, (1.1)
where K and L are compact convex sets containing the origin and 1 ≤ p ≤ ∞.
When p = ∞, (1.1) is interpreted as h(K +∞ L, x) = max{h(K,x), h(L, x)}, as is
customary. The Lp addition and inequalities are the fundamental and core content
in the Lp Brunn–Minkowski theory; we refer the reader to [6, 9, 10, 11, 12, 18, 20,
23, 24, 21, 22, 27, 28, 29, 32, 33, 34] and the references therein. In recent years, a
new extension of the Lp-Brunn–Minkowski theory to the Orlicz–Brunn–Minkowski
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theory was initiated by Lutwak, Yang, and Zhang [25, 26]. Following this, Gardner,
Hug, and Weil [7] introduced for the first time the Orlicz addition, constructed a
general framework for the Orlicz–Brunn–Minkowski theory, and made clear the
relation to Orlicz spaces and norms. The Orlicz addition of convex bodies was also
introduced in different ways, and it extends the Lp-Brunn–Minkowski inequality
to the Orlicz–Brunn–Minkowski inequality (see [35]). Advances in the theory can
be found in [8, 14, 15, 16, 17, 30, 36, 37, 38, 39]. The Orlicz addition K +ψ L of
compact convex sets K and L in Rn containing the origin is implicitly defined by
(see [7])

ψ

(
h(K,x)

h(K +ψ L, x) ,
h(L, x)

h(K +ψ L, x)

)
= 1 (1.2)

for x ∈ Rn if h(K,x)+h(L, x) > 0, and by h(K+ψL, x) = 0 if h(K,x) = h(L, x) =
0. Here ψ ∈ Φ2, the set of convex functions ψ : [0,∞)2 → [0,∞) that are increasing
in each variable and satisfy ψ(0, 0) = 0, ψ(1, 0) = ψ(0, 1) = 1. The particular
instance of interest corresponds to using (1.2) with ψ(x1, x2) = ψ1(x1) + εψ2(x2)
for ε > 0 and some ψ1, ψ2 ∈ Φ, the set of convex functions ψi : [0,∞) → (0,∞)
that are increasing and satisfy ψi(1) = 1 and ψi(0) = 0, where i = 1, 2. The Orlicz
addition reduces to the Lp addition, 1 ≤ p < ∞, when ψ(x1, x2) = xp1 + xp2, or
to the L∞ addition when ψ(x1, x2) = max{x1, x2}. Moreover, Gardner, Hug, and
Weil introduced the Orlicz mixed volume of K and L, obtaining the equation

Vψ(K,L) = 1
n

∫
Sn−1

ψ

(
h(L, u)
h(K,u)

)
h(K,u)S(K, du),

where S(K,u) is the mixed surface area measure of K, and ψ ∈ Φ. Here K is a
convex body containing the origin in its interior, and L is a compact convex set
containing the origin. Let Kn be the class of nonempty compact convex subsets
of Rn, let Kn

o be the class of members of Kn containing the origin, and let Kn
oo be

those sets in Kn containing the origin in their interiors. A set K ∈ Kn is called a
convex body if its interior is nonempty. If K,L are convex bodies containing the
origin, ε > 0 and ψ ∈ Φ, then the Orlicz linear combination of convex bodies K
and L, denoted by K +ψ,ε L, is defined by (see [7])

ψ

(
h(K,x)

h(K +ψ,ε L, x)

)
+ ε · ψ

(
h(L, x)

h(K +ψ,ε L, x)

)
= 1

for x ∈ Rn and ε > 0.
For K ∈ Kn and r ∈ N0, the moment tensor of rank r, denoted by Ψr(K), is

defined by (see [31, p. 316])

Ψr(K) := 1
r!

∫
K

xr dx. (1.3)

Complying with the basic spirit of Aleksandrov [1], Fenchel and Jensen’s [4] intro-
duction of mixed quermassintegrals, and the introduction of Lutwak’s [19] p-mixed
quermassintegrals, we base our study on the first order Orlicz variation of the mo-
ment tensor. In Section 3, we prove that the first order Orlicz variation of the
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moment tensor can be expressed as
d

dε

∣∣∣∣
ε→0+

Ψr(K +ψ,ε L) = 1
(ψ1)′

l(1) · Ψψ2,r(K,L),

where K ∈ Kn
oo, L ∈ Kn

o , ψ1, ψ2 ∈ Φ and r ∈ N0, and (ψ1)′
l(1) denotes the value

of the left derivative of the convex function ψ1 at point 1. In this first order
variational equation, we find a new geometric quantity. Based on this, we extract
the required geometric quantity, denoted by Ψψ2,r(K,L), and call it Orlicz mixed
moment tensor of K and L, defined by

Ψψ2,r(K,L) := (ψ1)′
l(1) · d

dε

∣∣∣∣
ε→0+

Ψr(K +ψ,ε L).

We also prove the new affine geometric quantity Ψψ,r(K,L) has an integral repre-
sentation:

Ψψ,r(K,L) = 1
n+ r

∫
Sn−1

ψ

(
h(L, u)
h(K,u)

)
h(K,u)Srn−1(K, du), (1.4)

where ψ ∈ Φ and Srn−1(K, ·) denotes the Tr-valued Borel measure on Sn−1 (see
[31, p. 319]). In (1.4), if K = L, the Orlicz mixed moment tensor Ψψ,r(K,L)
becomes the moment tensor Ψr(K). When r = 0, the Orlicz mixed moment tensor
Ψψ,r(K,L) becomes the Orlicz mixed volume Vψ(K,L). Moreover, taking ψ(t) = tp

and p ≥ 1 in (1.4), Ψψ,r(K,L) becomes a new mixed moment tensor in Lp-space,
denoted by Ψp,r(K,L) and called Lp-mixed moment tensor of K and L:

Ψp,r(K,L) = 1
n+ r

∫
Sn−1

h(L, u)ph(K,u)1−pSrn−1(K, du).

When r = 0, Ψp,r(K,L) becomes the well-known Lp-mixed volume Vp(K,L), de-
fined by (see [21])

Vp(K,L) = 1
n

∫
Sn−1

h(L, u)ph(K,u)1−pSn−1(K, du).

When p = 1, we write Ψp,r(K,L) as Ψr(K,L) and call it mixed moment tensor of
K and L:

Ψr(K,L) = 1
n+ r

∫
Sn−1

h(L, u)Srn−1(K, du). (1.5)

In Section 4, we establish the following inequality:
Orlicz–Minkowski inequality for mixed moment tensors. If K ∈ Kn

oo,
L ∈ Kn

o , ψ ∈ Φ, and r ∈ N0, then

Ψψ,r(K,L) ≥ Ψr(K) · ψ
(

Ψr(K,L)
Ψr(K)

)
. (1.6)

If ψ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Obviously, a special case of (1.6) is the following well-known Lp-Minkowski in-

equality. If K,L ∈ Kn
oo, p ≥ 1, and 0 ≤ i < n− 1, then

Vp(K,L)n ≥ V (K)n−pV (L)p,
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with equality if and only if K and L are dilates or L = {o}. On the other hand, if
r = 0, then (1.6) changes to the Orlicz–Minkowski inequality, which was obtained
by Gardner, Hug, and Weil [7]. Let ψ ∈ Φ. If K ∈ Kn

oo and L ∈ Kn
o , then

Vψ(K,L) ≥ V (K) · ψ

((
V (L)
V (K)

)1/n
)
.

If ψ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
In Section 5, we establish the following inequality:

Orlicz–Brunn–Minkowski inequality for mixed moment tensors. Let Kε =
K +ψ,ε L. If K ∈ Kn

oo, L ∈ Kn
o , ψ ∈ Φ2, and r ∈ N0, then, for ε > 0,

1 ≥ ψ

(
Ψr(Kε,K)

Ψr(K +ψ,ε L) ,
Ψr(Kε, L)

Ψr(K +ψ,ε L)

)
. (1.7)

If ψ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Obviously, a special case of (1.7) is the following well-known Lp-Brunn–Minkowski

inequality. If K ∈ Kn
oo, L ∈ Kn

o , and p ≥ 1, then

V (K +p L)p/n ≥ V (K)p/n + V (L)p/n,
with equality if and only if K and L are dilates or L = {o}. If r = 0, then (1.7)
changes to the Orlicz–Brunn–Minkowski inequality, which was recently established
by Gardner, Hug, and Weil [7]:

1 ≥ ψ

((
V (K)

V (K +ψ,ε L)

)1/n
,

(
V (L)

V (K +ψ,ε L)

)1/n
)
.

If ψ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.

2. Notations and preliminaries

The setting for this paper is the n-dimensional Euclidean space Rn. We denote
by B the unit ball centered at the origin, whose surface is Sn−1, and by u ∈ Sn−1 we
denote unit vectors. For a compact set K, we write V (K) for the (n-dimensional)
Lebesgue measure of K and call this the volume of K. If K is a nonempty closed
(not necessarily bounded) convex set, then

h(K,x) = sup{x · y : y ∈ K},
for x ∈ Rn, defines the support function of K, where x · y denotes the usual inner
product of x and y in Rn. A nonempty closed convex set is uniquely determined
by its support function. The support function is homogeneous of degree 1, that is,

h(K, rx) = rh(K,x)
for all x ∈ Rn and r ≥ 0. Let d denote the Hausdorff metric on Kn, i.e., for
K,L ∈ Kn,

d(K,L) = |h(K,u) − h(L, u)|∞,
where | · |∞ denotes the sup-norm on the space of continuous functions C(Sn−1).
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2.1. Mixed volumes. If Ki ∈ Kn (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are
nonnegative real numbers, then of fundamental importance is the fact that the
volume of

∑r
i=1 λiKi is a homogeneous polynomial in λi given by (see e.g. [2])

V (λ1K1 + · · · + λnKn) =
∑

i1,...,in

λi1 . . . λinVi1...in , (2.1)

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not ex-
ceeding r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . ,Kin and is
uniquely determined by (2.1); it is called the mixed volume of Ki, . . . ,Kin and is
written as V (Ki1 , . . . ,Kin). IfK1 = · · · = Kn−i = K andKn−i+1 = · · · = Kn = B,
then the mixed volumes V (K1, . . . ,Kn) are written as Wi(K) and called quer-
massintegrals (or i-th quermassintegrals) of K. If K1 = · · · = Kn−i−1 = K,
Kn−i = · · · = Kn−1 = B and Kn = L, then the mixed volumes V (K1, . . . ,Kn) are
written as Wi(K,L) and called mixed quermassintegrals of K and L.

When i = 0, the mixed quermassintegrals Wi(K,L) become the well-known
mixed volume V1(K,L).

For K ∈ Kn
oo, and i = 0, 1, . . . , n − 1, there exists a regular Borel measure

Sn−1(K, ·) on Sn−1, such that the mixed volume V1(K,L) has the following repre-
sentation:

V1(K,L) = 1
n

lim
ε→0+

V (K + ε · L) − V (K)
ε

= 1
n

∫
Sn−1

h(L, u) dSn−1(K,u).

The Minkowski inequality for the mixed volumes states that, if K,L ∈ Kn, then

V1(K,L)n ≥ V (K)n−1V (L), (2.2)

with equality if and only if K and L are dilates (see [3]).
Associated with K1, . . . ,Kn ∈ Kn is a Borel measure S(K1, . . . ,Kn−1, ·) on

Sn−1, called the mixed surface area measure of K1, . . . ,Kn−1, which has the prop-
erty that, for each K ∈ Kn,

V (K1, . . . ,Kn−1,K) = 1
n

∫
Sn−1

h(K,u) dS(K1, . . . ,Kn−1, u). (2.3)

(see e.g. [8, p. 353]). In fact, the measure S(K1, . . . ,Kn−1, ·) can be defined by the
property that (2.3) holds for all K ∈ Kn. Let K1 = · · · = Kn−1 = K; then the
mixed surface area measure S(K1, . . . ,Kn−1, ·) becomes the surface area measure
Sn−1(K, ·).

2.2. Lp-mixed volumes. The Lp-mixed volumes Vp(K,L), as the first variation of
the ordinary volumes with respect to Firey’s addition, are defined by (see e.g. [21])

Vp(K,L) = p

n
lim
ε→0+

V (K +p ε · L) − V (K)
ε

for K ∈ Kn
oo, L ∈ Kn

o , and real p ≥ 1. The Lp-mixed volume Vp(K,L) has the
following integral representation:

Vp(K,L) = 1
n

∫
Sn−1

h(L, u)p dSp(K,u),
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where Sp(K, ·) denotes the Borel measure on Sn−1. The measure Sp(K, ·) is abso-
lutely continuous with respect to Sn−1(K, ·), and has Radon–Nikodym derivative

dSp(K, ·)
dSn−1(K, ·) = h(K, ·)1−p.

A fundamental inequality for the Lp-mixed volumes states that, for K,L ∈ Kn
oo

and p ≥ 1,
Vp(K,L)n ≥ V (K)n−pV (L)p, (2.4)

with equality if and only if K and L are dilates or L = {o}. The Lp-Brunn–
Minkowski inequality states that, if K ∈ Kn

oo, L ∈ Kn
o and p ≥ 1, then

V (K +p L)p/n ≥ V (K)p/n + V (L)p/n, (2.5)

with equality if and only if K and L are dilates or L = {o}.

2.3. Orlicz linear combination. Throughout the paper, the standard orthonor-
mal basis for Rn will be {e1, . . . , en}. Let Φn, n ∈ N, denote the set of convex
functions ψ : [0,∞)n → [0,∞) that are strictly increasing in each variable and
satisfy ψ(0) = 0 and ψ(ej) = 1 > 0, j = 1, . . . , n. When n = 1, we shall write Φ
instead of Φ1. The left derivative and right derivative of a real-valued function f
are denoted by (f)′

l and (f)′
r, respectively.

Let m ≥ 2, ψ ∈ Φm, Kj ∈ Kn
0 and j = 1, . . . ,m; we define the Orlicz addition

of K1, . . . ,Km, denoted by +ψ(K1, . . . ,Km), as follows (see [7]):

h(+ψ(K1, . . . ,Km), x) = inf
{
λ > 0 : ψ

(
h(K1, x)

λ
, . . . ,

h(Km, x)
λ

)
≤ 1
}

for all x ∈ Rn. Equivalently, the Orlicz addition +ψ(K1, . . . ,Km) can be defined
implicitly (and uniquely) by

ψ

(
h(K1, x)

h(+ψ(K1, . . . ,Km), x) , . . . ,
h(Km, x)

h(+ψ(K1, . . . ,Km), x)

)
= 1 (2.6)

for all x ∈ Rn. An important special case is obtained when

ψ(x1, . . . , xm) =
m∑
j=1

ψj(xj)

for some fixed ψj ∈ Φ such that ψ1(1) = · · · = ψm(1) = 1. We then write
+ψ(K1, . . . ,Km) = K1 +ψ · · ·+ψKm. This means that K1 +ψ · · ·+ψKm is defined
either by

h(K1 +ψ · · · +ψ Km, u) = inf
{
λ > 0 :

m∑
j=1

ψj

(
h(Kj , x)

λ

)
≤ 1
}

for all x ∈ Rn, or by the corresponding special case of (2.6).
For real p ≥ 1, K,L ∈ Kn

oo and α, β ≥ 0 (not both zero), the Firey linear
combination α ·K +p β · L ∈ Kn

o can be defined by (see [5])

h(α ·K +p β · L, ·)p = αh(K, ·)p + βh(L, ·)p.

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



ORLICZ VERSION OF MIXED MOMENT TENSORS 481

Obviously, the Firey and Minkowski scalar multiplications are related by α · K =
α1/pK. The Orlicz linear combination, denoted by +ψ(K,L, α, β) for K,L ∈ Kn

o ,
ψ1, ψ2 ∈ Φ and α, β ≥ 0, is defined by (see [7])

αψ1

(
h(K,x)

h(+ψ(K,L, α, β), x)

)
+ βψ2

(
h(L, x)

h(+ψ(K,L, α, β), x)

)
= 1 (2.7)

if αh(K,x)+βh(L, x) > 0, and by h(+ψ(K,L, α, β), x) = 0 if αh(K,x)+βh(L, x) =
0, for all x ∈ Rn. It is easy to verify that when ψ1(t) = ψ2(t) = tp, p ≥ 1, the
Orlicz linear combination +ψ(K,L, α, β) equals the Firey combination α·K+pβ ·L.
Henceforth we shall write K +ψ,ε L instead of +ψ(K,L, 1, ε) for ε ≥ 0, α = 1, and
β = ε, and assume throughout that this is defined by (2.7).

2.4. Mixed moment tensors. For K ∈ Kn and r ∈ N0, the moment tensor of
rank r, denoted by Ψr(K), is defined by (see [31, p. 316])

Ψr(K) := 1
r!

∫
K

xr dx. (2.8)

The normalizing factor 1
r! has the effect that the formula for the polynomial be-

haviour of Ψr under translations takes a simple form, namely

Ψr(K + t) =
r∑
j=0

1
j!Ψr−j(K)tj for t ∈ Rn.

We can write (2.8) in the form (see [30, p. 319])

Ψr(K) = 1
n+ r

∫
Sn−1

h(K,u)Srn−1(K, du),

where K ∈ Kn, r ∈ N0, and Srn−1(K, ·) denotes the Tr-valued Borel measure on
Sn−1.

3. Orlicz mixed moment tensors

In the following, for brevity, let
Kε := K +ψ,ε L,

where ε > 0, K ∈ Kn
oo, and L ∈ Kn

o .

Lemma 3.1. If K,L ∈ Kn
o , then

Kε → K (3.1)
in the Hausdorff metric as ε → 0+.

Lemma 3.1 was first proved in [7].

Lemma 3.2. Let ψ1, ψ2 ∈ Φ. If K ∈ Kn
oo, L ∈ Kn

o , and r ∈ N0, then

lim
ε→0+

Ψr(K,Kε) − Ψr(K)
ε

= 1
(n+ r)(ψ1)′

l(1)
·
∫
Sn−1

ψ2

(
h(L, u)
h(K,u)

)
h(K,u)Srn−1(K, du). (3.2)
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Proof. From (1.3), (1.5), (2.7), (3.1) and in view of the continuity of ψ−1
1 and ψ2,

we obtain

lim
ε→0+

Ψr(K,Kε) − Ψr(K)
ε

= 1
n+ r

lim
ε→0+

1
ε

∫
Sn−1

 h(K,u)
ψ−1

1

(
1 − εψ2

(
h(L,u)
h(Kε,u)

)) − h(K,u)

Srn−1(K, du)

= 1
n+ r

× lim
ε→0+

∫
Sn−1

h(K,u) · dψ
−1
1 (y)
dy ·

(
ψ2

(
h(L,u)
h(Kε,u)

)
− ε · dψ2(z)

dz · h(L,u)
h(Kε,u)2

dh(Kε,u)
dε

)
(
ψ−1

1

(
1 − εψ2

(
h(L,u)
h(Kε,u)

)))2

× Srn−1(K, du),
where

y = 1 − εψ2

(
h(L, u)
h(Kε, u)

)
and

z = h(L, u)
h(Kε, u) .

Noting that y → 1− as ε → 0+, and
dψ−1

1 (y)
dy

= lim
y→1−

ψ−1
1 (y) − ψ−1

1 (1)
y − 1 = 1

(ψ1)′
l(1)

,

we obtain

lim
ε→0+

Ψr(K,Kε) − Ψr(K)
ε

= 1
(n+ r)(ψ1)′

l(1)
·
∫
Sn−1

ψ2

(
h(L, u)
h(K,u)

)
h(K,u)Srn−1(K, du).

□

Lemma 3.3. Let ψ1, ψ2 ∈ Φ. If K ∈ Kn
oo, L ∈ Kn

o , and r ∈ N0, then

lim
ε→0+

Ψr(Kε) − Ψr(Kε,K)
ε

= 1
(n+ r)(ψ1)′

l(1)

∫
Sn−1

h(K,u)ψ2

(
h(L, u)
h(K,u)

)
Srn−1(K, du). (3.3)

Proof. This follows immediately from Lemma 3.2. □

Setting Ψψ,r(K,L) for any ψ ∈ Φ and r ∈ N0, the integral on the right-hand
side of (3.3) with ψ2 replaced by ψ, we see that either side of the equation (3.3)
is equal to Ψψ2,r(K,L), and therefore this new geometric quantity Ψψ,r(K,L) has
been born; we call it Orlicz mixed moment tensor.
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Definition 3.4 (Orlicz mixed moment tensor). For ψ ∈ Φ and r ∈ N0, the Orlicz
mixed moment tensor, denoted by Ψψ,r(K,L), is defined by

Ψψ,r(K,L) := 1
n+ r

∫
Sn−1

ψ

(
h(L, u)
h(K,u)

)
h(K,u)Srn−1(K, du) (3.4)

for all K ∈ Kn
oo and L ∈ Kn

o .

It is worth noting that we write ψ2 as ψ in equation (3.4), and hence ψ2(K,L)
and ψ(K,L) have the same meaning here.

Lemma 3.5. If ψ1, ψ2 ∈ Φ, K ∈ Kn
oo, L ∈ Kn

o , and r ∈ N0, then

Ψψ2,r(K,L) = (ψ1)′
l(1) · lim

ε→0+

Ψr(Kε) − Ψr(Kε,K)
ε

. (3.5)

Proof. This follows immediately from (3.3) and (3.4). □

4. Orlicz–Minkowski inequality for Orlicz mixed moment tensors

Definition 4.1 (Normalized tensor measure). If K ∈ Kn
o and r ∈ N0, the normal-

ized tensor measure, denoted by Ψ̄r(K, υ), is defined by

Ψ̄r(K, dυ) = h(K, υ)
(n+ r)Ψr(K)S

r
n−1(K, dυ). (4.1)

For r = 0, the normalized tensor measure Ψ̄r(K, υ) becomes the normalized
cone measure V̄n(K, υ), by (see [7])

V̄n(K, dυ) = h(K, υ)
nV (K) Sn−1(K, dυ).

In the following, we start with two auxiliary results, which will be the base for
the remainder of our study.

Lemma 4.2 (Jensen’s inequality [13]). Suppose that µ is a probability measure on
a space X and g : X → I ⊂ R is a µ-integrable function, where I is a possibly
infinite interval. If ϕ : I → R is a convex function, then∫

X

ϕ(g(x)) dµ(x) ≥ ϕ

(∫
X

g(x) dµ(x)
)
.

If ϕ is strictly convex, equality holds if and only if g(x) is constant for µ-almost all
x ∈ X.

Lemma 4.3. Let 0 < a ≤ ∞ be an extended real number, and let I = [0, a) be a
possibly infinite interval. Suppose that ψ : I → [0,∞) is convex with ψ(0) = 0. If
K ∈ Kn

oo and L ∈ Kn
o are such that L ⊂ int(aK), and r ∈ N0, then

1
(n+ r)Ψr(K)

∫
Sn−1

ψ

(
h(L, u)
h(K,u)

)
h(K,u)Srn−1(K, du) ≥ ψ

(
Ψr(K,L)
Ψr(K)

)
. (4.2)

If ψ is strictly convex, equality holds if and only if K and L are homothetic or
L = {o}.
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Proof. Since L ⊂ int(aK), we have 0 ≤ h(L,u)
h(K,u) < a for all u ∈ Sn−1, and∫

Sn−1
Ψ̄r(K, dυ) = 1, (4.3)

so (4.3) defines a Borel probability measure Ψ̄r(K, υ) on Sn−1. Hence, from (1.5),
(4.1), and Jensen’s inequality, we obtain

1
(n+ r)Ψr(K)

∫
Sn−1

ψ

(
h(L, u)
h(K,u)

)
h(K,u)Srn−1(K, du)

=
∫
Sn−1

ψ

(
h(L, u)
h(K,u)

)
Ψ̄r(K, dυ)

≥ ψ

(
1

(n+ r)Ψr(K)

∫
Sn−1

h(L, u)Srn−1(K, dυ)
)

= ψ

(
Ψr(K,L)
Ψr(K)

)
.

Next, we discuss the equality condition of (4.2). If ψ is strictly convex, suppose
L and K are homothetic or L = {o}; then there exists r ≥ 0 such that

h(L, u)/h(K,u) = r.

This shows that
r = Ψr(K,L)

Ψr(K) .

From (1.3) and (3.4), we obtain
1

(n+ r)Ψr(K)

∫
Sn−1

ψ

(
h(L, u)
h(K,u)

)
h(K,u)Srn−1(K, du)

= 1
(n+ r)Ψr(K)

∫
Sn−1

ψ

(
Ψr(K,L)
Ψr(K)

)
h(K,u)Srn−1(K, du)

= ψ

(
Ψr(K,L)
Ψr(K)

)
.

Conversely, if ψ is strictly convex, suppose the equality holds in (4.2); from the
equality condition of Jensen’s inequality, it follows that this equality holds if
h(L, u)/h(K,u) are constant. This yields that if this equality holds then K and L
must be homothetic or L = {o}. □

Theorem 4.4 (Orlicz–Minkowski inequality for Orlicz mixed moment tensors).
Let ψ ∈ Φ. If K ∈ Kn

oo, L ∈ Kn
o , and r ∈ N0, then

Ψψ,r(K,L) ≥ Ψr(K) · ψ
(

Ψr(K,L)
Ψr(K)

)
. (4.4)

If ψ is strictly convex, equality holds if and only if K and L are homothetic or
L = {o}.

Proof. This follows immediately from (3.4) and Lemma 4.3 with a = ∞. □
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Corollary 4.5 (Minkowski inequality for Lp-mixed moment tensors). If K ∈ Kn
oo,

L ∈ Kn
o , p ≥ 1, and r ∈ N0, then

Ψp,r(K,L) ≥ Ψr(K)1−p · Ψr(K,L)p, (4.5)

with equality if and only if K and L are homothetic or L = {o}.

Proof. This follows immediately from (2.3) and (4.4) with ψ(t) = tp and p ≥ 1. □

For r = 0, and from (2.2), (4.5) becomes Lutwak’s Lp-Minkowski inequality
(2.4) stated in Section 2.

5. Orlicz–Brunn–Minkowski inequality for mixed moment tensors

In this section, our main goal is to establish an Orlicz–Brunn–Minkowski in-
equality for mixed moment tensors. As an application, we use this new inequality
to prove the previous Minkowski inequality for Orlicz mixed moment tensors.

Lemma 5.1 ([7]). Let K,L ∈ Kn
o , ε > 0, and ψ ∈ Φ.

(1) If K and L are dilates, then K and K +ψ,ε L are dilates.
(2) If K and K +ψ,ε L are dilates, then K and L are dilates.

Theorem 5.2. Let ψ ∈ Φ2. If K ∈ Kn
oo, L ∈ Kn

o , and r ∈ N0, then, for ε > 0,

1 ≥ ψ

(
Ψr(K +ψ,ε L,K)

Ψr(K +ψ,ε L) ,
Ψr(K +ψ,ε L,L)

Ψr(K +ψ,ε L)

)
. (5.1)

If ψ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.

Proof. From (1.3), (1.5), (2.6), (2.7), (3.4), and (4.4), we obtain, for ψ1, ψ2 ∈ Φ,

Ψr(Kε) = 1
n

∫
Sn−1

ψ

(
h(K,u)
h(Kε, u) ,

h(L, u)
h(Kε, u)

)
h(Kε, u)Srn−1(Kε, du)

= 1
n

∫
Sn−1

(
ψ1

(
h(K,u)
h(Kε, u)

)
+ ε · ψ2

(
h(L, u)
h(Kε, u)

))
h(Kε, u)Srn−1(Kε, du)

= Ψψ1,r(Kε,K) + ε · Ψψ2,r(Kε, L)

≥ Ψr(Kε)
(
ψ1

(
Ψr(Kε,K)

Ψr(Kε)

)
+ ε · ψ2

(
Ψr(Kε, L)

Ψr(Kε)

))

= Ψr(Kε) · ψ

(
Ψr(Kε,K)

Ψr(Kε)
,

Ψr(Kε, L)
Ψr(Kε)

)
. (5.2)

Obviously, (5.2) yields (5.1).
If ψ is strictly convex, from the equality of (4.4) it follows that equality holds

in (5.2) if and only if K and Kε are homothetic, and L and Kε are homothetic.
Combining this with Lemma 5.1, it follows that if ψ is strictly convex then equality
holds if and only if K and L are dilates or L = {o}. □
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Corollary 5.3. If K ∈ Kn
oo, L ∈ Kn

o , p ≥ 1, and r ∈ N0, then
Ψr(K +ψ,ε L)p ≥ Ψr(K +ψ,ε L,K)p + Ψr(K +ψ,ε L,L)p, (5.3)

with equality if and only if K and L are dilates or L = {o}.

Proof. This follows immediately from Theorem 5.2 with ψ(x1, x2) = xp1 + xp2 and
p ≥ 1. □

Using r = 0 and (2.2), (5.3) becomes the Lp-Brunn–Minkowski inequality (2.5)
stated in Section 2.

Corollary 5.4. Let ψ ∈ Φ. If K ∈ Kn
oo, L ∈ Kn

o , and r ∈ N0, then

Ψψ,r(K,L) ≥ Ψr(K) · ψ
(

Ψr(K,L)
Ψr(K)

)
.

If ψ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.

Proof. From (3.2) and (3.5), and by using the Orlicz–Brunn–Minkowski inequality
(5.1), we obtain

1
(ψ1)′

l(1) · Ψψ2,r(K,L)

= lim
ε→0+

Ψr(Kε) − Ψr(Kε,K)
ε

= lim
ε→0+

1 − Ψr(Kε,K)
Ψr(Kε)

1 − ψ1

(
Ψr(Kε,K)

Ψr(Kε)

) ·
1 − ψ1

(
Ψr(Kε,K)

Ψr(Kε)

)
ε

· Ψr(Kε)

= lim
t→1−

1 − t

1 − ψ1(t) · lim
ε→0+

1 − ψ1

(
Ψr(Kε,K)

Ψr(Kε)

)
ε

· Ψr(Kε)


≥ n

(ψ1)′
l(1) · lim

ε→0+
ψ2

(
Ψr(Kε, L)

Ψr(Kε)

)
· Ψr(K)

= 1
(ψ1)′

l(1) · ψ2

(
Ψr(K,L)
Ψr(K)

)
· Ψr(K).

(5.4)

Obviously, (5.4) is just the Orlicz–Minkowski inequality for mixed moment ten-
sors. From the equality conditions of the Orlicz–Brunn–Minkowski inequality (5.1),
it follows that if ϕ is strictly convex, the equality in (5.4) holds if and only if K
and L are dilates or L = {o}.

This proof is complete. □

6. Conclusion

We introduced a new affine geometric quantity, the Orlicz mixed moment tensors
Ψψ,r(K,L), which is an important generalization of the classical moment tensors
Ψr(K). The Minkowski and Brunn–Minkowski inequalities for the Orlicz mixed
moment tensors were established. The new Orlicz inequalities in special cases yield
the Orlicz–Minkowski and the Orlicz–Brunn–Minkowski inequalities, respectively.
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Moreover, diverse inequalities for certain new Lp-mixed moment tensors Ψp,r(K,L)
are also derived. Hence, our results here are meaningful.

Acknowledgment. The author expresses his grateful thanks to the production
editor for his many excellent suggestions and comments.
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