The isolation of the first eigenvalue for a Dirichlet eigenvalue problem involving the Finsler $p$-Laplacian and a nonlocal term
DOI:
https://doi.org/10.33044/revuma.2281Abstract
We analyse the isolation of the first eigenvalue for an eigenvalue problem involving the Finsler $p$-Laplace operator and a nonlocal term on a bounded domain subject to the homogeneous Dirichlet boundary condition.
Downloads
References
A. Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728. MR 0920052.
G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (1996), no. 3, 537–566. MR 1416006.
M. Belloni, V. Ferone, and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys. 54 (2003), no. 5, 771–783. MR 2019179.
M. Belloni, B. Kawohl, and P. Juutinen, The $p$-Laplace eigenvalue problem as $ptoinfty$ in a Finsler metric, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 1, 123–138. MR 2201278.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. MR 2759829.
J. I. Diaz and J. E. Saa, Uniqueness of nonnegative solutions for elliptic nonlinear diffusion equations with a general perturbation term, in Proceedings of the VIII CEDYA, Santander, 1985. http://www.mat.ucm.es/ jidiaz/Publicaciones/C_ActasPDF/C_015.pdf
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer, Berlin, 1998.
A. Grecu, The simplicity of the first eigenvalue for an eigenvalue problem involving the Finsler $p$-Laplace operator and a nonlocal term, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), no. 3, 355–363. MR 4007603.
A. Grecu, The limiting behaviour of solutions to a family of eigenvalue problems, Complex Var. Elliptic Equ. 64 (2019), no. 12, 2063–2076. MR 4001212.
A. Lê, Eigenvalue problems for the $p$-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057–1099. MR 2196811.
P. Lindqvist, On the equation $operatorname{div}(|nabla u|^{p-2}nabla u)+lambda|u|^{p-2}u=0$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR 1007505. Addendum, Proc. Amer. Math. Soc. 116 (1992), 583–584. MR 1139483
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 0727034.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Andrei Grecu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.