Spectrality of planar Moran–Sierpinski-type measures
DOI:
https://doi.org/10.33044/revuma.2932Abstract
Let $\{M_n\}_{n=1}^{\infty}$ be a sequence of expanding positive integral matrices with $M_n= \begin{pmatrix} p_n & 0\\0 & q_n \end{pmatrix}$ for each $n\ge 1$, and let $D=\left\{\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix} \right\}$ be a finite digit set in $\mathbb{Z}^2$. The associated Borel probability measure obtained by an infinite convolution of atomic measures \[ \mu_{\{M_n\},D}=\delta_{M_1^{-1}D}*\delta_{(M_2M_1)^{-1}D}*\cdots*\delta_{(M_n\cdots M_2M_1)^{-1}D}*\cdots \] is called a Moran–Sierpinski-type measure. We prove that, under certain conditions, $\mu_{\{M_n\}, D}$ is a spectral measure if and only if $3\mid p_n$ and $3\mid q_n$ for each $n\geq2$.
Downloads
References
L.-X. An and X.-G. He, A class of spectral Moran measures, J. Funct. Anal. 266 no. 1 (2014), 343–354. DOI MR Zbl
L.-X. An, X.-G. He, and K.-S. Lau, Spectrality of a class of infinite convolutions, Adv. Math. 283 (2015), 362–376. DOI MR Zbl
L.-X. An, X.-G. He, and H.-X. Li, Spectrality of infinite Bernoulli convolutions, J. Funct. Anal. 269 no. 5 (2015), 1571–1590. DOI MR Zbl
L. An, X. Fu, and C.-K. Lai, On spectral Cantor-Moran measures and a variant of Bourgain's sum of sine problem, Adv. Math. 349 (2019), 84–124. DOI MR Zbl
L. An and C. Wang, On self-similar spectral measures, J. Funct. Anal. 280 no. 3 (2021), Paper No. 108821, 31 pp. DOI MR Zbl
X.-R. Dai, When does a Bernoulli convolution admit a spectrum?, Adv. Math. 231 no. 3-4 (2012), 1681–1693. DOI MR Zbl
X.-R. Dai, Spectra of Cantor measures, Math. Ann. 366 no. 3-4 (2016), 1621–1647. DOI MR Zbl
X.-R. Dai, X.-Y. Fu, and Z.-H. Yan, Spectrality of self-affine Sierpinski-type measures on $ℝ^2$, Appl. Comput. Harmon. Anal. 52 (2021), 63–81. DOI MR Zbl
X.-R. Dai, X.-G. He, and K.-S. Lau, On spectral $N$-Bernoulli measures, Adv. Math. 259 (2014), 511–531. DOI MR Zbl
Q.-R. Deng and X.-Y. Wang, On the spectra of self-affine measures with three digits, Anal. Math. 45 no. 2 (2019), 267–289. DOI MR Zbl
Q.-R. Deng, On the spectra of Sierpinski-type self-affine measures, J. Funct. Anal. 270 no. 12 (2016), 4426–4442. DOI MR Zbl
Q.-R. Deng and K.-S. Lau, Sierpinski-type spectral self-similar measures, J. Funct. Anal. 269 no. 5 (2015), 1310–1326. DOI MR Zbl
D. E. Dutkay, D. Han, and Q. Sun, On the spectra of a Cantor measure, Adv. Math. 221 no. 1 (2009), 251–276. DOI MR Zbl
D. E. Dutkay, J. Haussermann, and C.-K. Lai, Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc. 371 no. 2 (2019), 1439–1481. DOI MR Zbl
K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, Chichester, 1990. MR Zbl
Y.-S. Fu, X.-G. He, and Z.-X. Wen, Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl. (9) 116 (2018), 105–131. DOI MR Zbl
B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101–121. DOI MR Zbl
L. He and X.-G. He, On the Fourier orthonormal bases of Cantor-Moran measures, J. Funct. Anal. 272 no. 5 (2017), 1980–2004. DOI MR Zbl
X.-G. He, M.-w. Tang, and Z.-Y. Wu, Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures, J. Funct. Anal. 277 no. 10 (2019), 3688–3722. DOI MR Zbl
T.-Y. Hu and K.-S. Lau, Spectral property of the Bernoulli convolutions, Adv. Math. 219 no. 2 (2008), 554–567. DOI MR Zbl
J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 no. 5 (1981), 713–747. DOI MR Zbl
P. E. T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal $L^2$-spaces, J. Anal. Math. 75 (1998), 185–228. DOI MR Zbl
M. N. Kolountzakis and M. Matolcsi, Complex Hadamard matrices and the spectral set conjecture, Collect. Math. Vol. Extra (2006), 281–291. MR Zbl Available at https://eudml.org/doc/41780.
M. N. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math. 18 no. 3 (2006), 519–528. DOI MR Zbl
I. Łaba and Y. Wang, On spectral Cantor measures, J. Funct. Anal. 193 no. 2 (2002), 409–420. DOI MR Zbl
J.-L. Li, Spectra of a class of self-affine measures, J. Funct. Anal. 260 no. 4 (2011), 1086–1095. DOI MR Zbl
J. Li, Spectrality of a class of self-affine measures with decomposable digit sets, Sci. China Math. 55 no. 6 (2012), 1229–1242. DOI MR Zbl
J. Li and Z. Wen, Spectrality of planar self-affine measures with two-element digit set, Sci. China Math. 55 no. 3 (2012), 593–605. DOI MR Zbl
M. Matolcsi, Fuglede's conjecture fails in dimension 4, Proc. Amer. Math. Soc. 133 no. 10 (2005), 3021–3026. DOI MR Zbl
T. Tao, Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 no. 2-3 (2004), 251–258. DOI MR Zbl
Z.-Y. Wang and X.-H. Dong, Spectrality of Sierpinski-Moran measures, Monatsh. Math. 195 no. 4 (2021), 743–761. DOI MR Zbl
Z.-H. Yan, Spectral properties of a class of Moran measures, J. Math. Anal. Appl. 470 no. 1 (2019), 375–387. DOI MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Qian Li, Min-Min Zhang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.