Spectrality of planar Moran–Sierpinski-type measures

Authors

  • Qian Li School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
  • Min-Min Zhang Department of Applied Mathematics, Anhui University of Technology, Ma'anshan, 243002, P. R. China

DOI:

https://doi.org/10.33044/revuma.2932

Abstract

Let $\{M_n\}_{n=1}^{\infty}$ be a sequence of expanding positive integral matrices with $M_n= \begin{pmatrix} p_n & 0\\0 & q_n \end{pmatrix}$ for each $n\ge 1$, and let $D=\left\{\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix} \right\}$ be a finite digit set in $\mathbb{Z}^2$. The associated Borel probability measure obtained by an infinite convolution of atomic measures \[ \mu_{\{M_n\},D}=\delta_{M_1^{-1}D}*\delta_{(M_2M_1)^{-1}D}*\cdots*\delta_{(M_n\cdots M_2M_1)^{-1}D}*\cdots \] is called a Moran–Sierpinski-type measure. We prove that, under certain conditions, $\mu_{\{M_n\}, D}$ is a spectral measure if and only if $3\mid p_n$ and $3\mid q_n$ for each $n\geq2$.

Downloads

Download data is not yet available.

References

L.-X. An and X.-G. He, A class of spectral Moran measures, J. Funct. Anal. 266 no. 1 (2014), 343–354.  DOI  MR  Zbl

L.-X. An, X.-G. He, and K.-S. Lau, Spectrality of a class of infinite convolutions, Adv. Math. 283 (2015), 362–376.  DOI  MR  Zbl

L.-X. An, X.-G. He, and H.-X. Li, Spectrality of infinite Bernoulli convolutions, J. Funct. Anal. 269 no. 5 (2015), 1571–1590.  DOI  MR  Zbl

L. An, X. Fu, and C.-K. Lai, On spectral Cantor-Moran measures and a variant of Bourgain's sum of sine problem, Adv. Math. 349 (2019), 84–124.  DOI  MR  Zbl

L. An and C. Wang, On self-similar spectral measures, J. Funct. Anal. 280 no. 3 (2021), Paper No. 108821, 31 pp.  DOI  MR  Zbl

X.-R. Dai, When does a Bernoulli convolution admit a spectrum?, Adv. Math. 231 no. 3-4 (2012), 1681–1693.  DOI  MR  Zbl

X.-R. Dai, Spectra of Cantor measures, Math. Ann. 366 no. 3-4 (2016), 1621–1647.  DOI  MR  Zbl

X.-R. Dai, X.-Y. Fu, and Z.-H. Yan, Spectrality of self-affine Sierpinski-type measures on $ℝ^2$, Appl. Comput. Harmon. Anal. 52 (2021), 63–81.  DOI  MR  Zbl

X.-R. Dai, X.-G. He, and K.-S. Lau, On spectral $N$-Bernoulli measures, Adv. Math. 259 (2014), 511–531.  DOI  MR  Zbl

Q.-R. Deng and X.-Y. Wang, On the spectra of self-affine measures with three digits, Anal. Math. 45 no. 2 (2019), 267–289.  DOI  MR  Zbl

Q.-R. Deng, On the spectra of Sierpinski-type self-affine measures, J. Funct. Anal. 270 no. 12 (2016), 4426–4442.  DOI  MR  Zbl

Q.-R. Deng and K.-S. Lau, Sierpinski-type spectral self-similar measures, J. Funct. Anal. 269 no. 5 (2015), 1310–1326.  DOI  MR  Zbl

D. E. Dutkay, D. Han, and Q. Sun, On the spectra of a Cantor measure, Adv. Math. 221 no. 1 (2009), 251–276.  DOI  MR  Zbl

D. E. Dutkay, J. Haussermann, and C.-K. Lai, Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc. 371 no. 2 (2019), 1439–1481.  DOI  MR  Zbl

K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, Chichester, 1990.  MR  Zbl

Y.-S. Fu, X.-G. He, and Z.-X. Wen, Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl. (9) 116 (2018), 105–131.  DOI  MR  Zbl

B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101–121.  DOI  MR  Zbl

L. He and X.-G. He, On the Fourier orthonormal bases of Cantor-Moran measures, J. Funct. Anal. 272 no. 5 (2017), 1980–2004.  DOI  MR  Zbl

X.-G. He, M.-w. Tang, and Z.-Y. Wu, Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures, J. Funct. Anal. 277 no. 10 (2019), 3688–3722.  DOI  MR  Zbl

T.-Y. Hu and K.-S. Lau, Spectral property of the Bernoulli convolutions, Adv. Math. 219 no. 2 (2008), 554–567.  DOI  MR  Zbl

J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 no. 5 (1981), 713–747.  DOI  MR  Zbl

P. E. T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal $L^2$-spaces, J. Anal. Math. 75 (1998), 185–228.  DOI  MR  Zbl

M. N. Kolountzakis and M. Matolcsi, Complex Hadamard matrices and the spectral set conjecture, Collect. Math. Vol. Extra (2006), 281–291.  MR  Zbl Available at https://eudml.org/doc/41780.

M. N. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math. 18 no. 3 (2006), 519–528.  DOI  MR  Zbl

I. Łaba and Y. Wang, On spectral Cantor measures, J. Funct. Anal. 193 no. 2 (2002), 409–420.  DOI  MR  Zbl

J.-L. Li, Spectra of a class of self-affine measures, J. Funct. Anal. 260 no. 4 (2011), 1086–1095.  DOI  MR  Zbl

J. Li, Spectrality of a class of self-affine measures with decomposable digit sets, Sci. China Math. 55 no. 6 (2012), 1229–1242.  DOI  MR  Zbl

J. Li and Z. Wen, Spectrality of planar self-affine measures with two-element digit set, Sci. China Math. 55 no. 3 (2012), 593–605.  DOI  MR  Zbl

M. Matolcsi, Fuglede's conjecture fails in dimension 4, Proc. Amer. Math. Soc. 133 no. 10 (2005), 3021–3026.  DOI  MR  Zbl

T. Tao, Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 no. 2-3 (2004), 251–258.  DOI  MR  Zbl

Z.-Y. Wang and X.-H. Dong, Spectrality of Sierpinski-Moran measures, Monatsh. Math. 195 no. 4 (2021), 743–761.  DOI  MR  Zbl

Z.-H. Yan, Spectral properties of a class of Moran measures, J. Math. Anal. Appl. 470 no. 1 (2019), 375–387.  DOI  MR  Zbl

Downloads

Published

2024-03-12

Issue

Section

Article