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SPECTRALITY OF PLANAR MORAN–SIERPINSKI-TYPE
MEASURES

QIAN LI AND MIN-MIN ZHANG

Abstract. Let {Mn}∞n=1 be a sequence of expanding positive integral matri-

ces with Mn =
(
pn 0
0 qn

)
for each n ≥ 1, and let D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
be a finite digit set in Z2. The associated Borel probability measure obtained
by an infinite convolution of atomic measures

µ{Mn},D = δ
M−1

1 D
∗ δ(M2M1)−1D ∗ · · · ∗ δ(Mn···M2M1)−1D ∗ · · ·

is called a Moran–Sierpinski-type measure. We prove that, under certain
conditions, µ{Mn},D is a spectral measure if and only if 3 | pn and 3 | qn for
each n ≥ 2.

1. Introduction

Let µ be a Borel probability measure with compact support on Rn. We say
that µ is a spectral measure if there exists a countable discrete set Λ ⊂ Rn such
that E(Λ) :=

{
e−2πi〈λ,x〉 : λ ∈ Λ

}
forms an orthonormal basis for L2(µ). In this

case, we call Λ a spectrum of µ. For the special case that a spectral measure is
the restriction of the Lebesgue measure on a bounded Borel subset Ω of Rn, we
call Ω a spectral set. The existence of a spectrum is closely related to the famous
Fuglede conjecture, which asserts that χΩdx is a spectral measure if and only if Ω
is a translational tile [17]. This conjecture has been proved to be false by Tao and
others in both directions on Rn for n ≥ 3 [24, 23, 29, 30]. But it is still open for
n = 1 and n = 2.

Jorgensen and Pedersen initiated an investigation of spectral properties of fractal
measures [22]. They showed that the Cantor-typed measure µ1/k, which is the
invariant measure of the iterated function system {φ0(x) = x/k, φ1(x) = (x+1)/k},
with natural weight, is a spectral measure if k is even, but not a spectral one if k is
odd. Since then, the study of the spectral properties of fractal measures became an
active research topic, where, for example, self-similar measures, self-affine measures
and Moran measures were considered and are still objects of study. The readers
may see [4, 5, 1, 3, 2, 7, 9, 6, 8, 12, 11, 10, 13, 16, 18, 20, 25, 28, 27, 32, 26, 19, 14] and
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the references therein for recent advances. In particular, Hu and Lau [20] showed
a necessary and sufficient condition so that L2(µρ) contains an infinite orthogonal
set for the more general Bernoulli convolution µρ, 0 < ρ < 1. Recently, Dai [6]
completely settled the problem that the only spectral Bernoulli convolution is µ1/2k.
The more general N -Bernoulli convolution was completely characterized by Dai et
al. in [9]. Let 0 < ρ < 1 and D = {0, 1, . . . , N − 1} with N > 1; they showed
that µρ,D is a spectral measure if and only if N | ρ−1. Unlike the one-dimensional
situation, the study on the spectral properties of measures in higher dimensions is
seldom addressed. See e.g. [14, 11, 10, 8, 12, 26, 28, 27]. We note that the most
widely studied are the self-affine measures generated by an expanding matrix and
a finite digit set.

A Sierpinski-type measure µM,D is defined by

µM,D(·) = 1
#D

∑
d∈D

µM,D(M(·)− d),

where M =
(
p 0
0 q

)
is an expanding matrix and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
. The

Sierpinski-type measure plays an important role in fractal geometry and in geo-
metric measure theory [15, 21]. Deng and Lau [12], and Dai, Fu, and Yan [8]
completely characterized the spectrality of the self-affine measure µM,D. They
proved that µM,D is a spectral measure if and only if 3 | p and 3 | q.

Motivated by the above results, in this paper we consider the spectral properties
of a class of planar Moran–Sierpinski-type measures. Let {Mn}∞n=1 be a sequence of
expanding positive integral matrices (that is, all the eigenvalues of Mn are strictly
greater than 1 in module) with

Mn =
(
pn 0
0 qn

)
∈M2(Z),

and letD =
{(

0
0

)
,

(
1
0

)
,

(
0
1

)}
be a finite digit set in Z2. Write δD = 1

#D
∑
d∈D δd,

where #D is the cardinality of D and δd is the Dirac measure at point d. Then
there exists a Borel probability measure with compact support generalized by the
infinite convolution

µ{Mn},D = δM−1
1 D ∗ δ(M2M1)−1D ∗ · · · ∗ δ(Mn···M2M1)−1D ∗ · · · . (1.1)

Here the sign ∗ denotes the convolution of two measures, and the convergence is in
the weak sense. The measure µ{Mn},D is called a Moran–Sierpinski-type measure,
and its support is the Moran set

T ({Mn}, D) =
{ ∞∑
n=1

(Mn · · ·M1)−1dn : dn ∈ D
}

:=
∞∑
n=1

(Mn · · ·M1)−1D.

Motivated by the above works, we extend the characterization of the spectrality
of the Sierpinski-type measure to the Moran measure µ{Mn},D in (1.1). Note that
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in case Mn = M =
(
p 0
0 q

)
, the measures µ{Mn},D and µM,D coincide. The main

result of this paper is as follows.
Theorem 1.1. Let µ{Mn},D be the Moran–Sierpinski-type measure defined as in
(1.1) and pn ≡ ±qn (mod 3) for all n ≥ 2. Then µ{Mn},D is a spectral measure if
and only if 3 | pn and 3 | qn for each n ≥ 2.

The most subtle part is proving the necessity. We note that convolution plays an
important role in the study of the spectrality of the Moran measure µ{Mn},D. The
following technical theorem gives a connection between two convolution measures,
which will be used to prove the necessity.
Theorem 1.2. Let B ⊂ Z2 be a finite set and let ν be a Borel probability measure
with compact support on R2. Suppose that µ := δB∗ν is a spectral measure. Further,
suppose the following:

(i) Let {λ1, λ2} be any bi-zero set of µ. If λ1 ∈ Z(δ̂B) and λ2 ∈ Z(ν̂) \ Z(δ̂B),
then λ1 − λ2 ∈ Z(δ̂B).

(ii) Z(µ̂) ⊂ A−1Z2 for some integral invertible matrix A.
Then both δB and ν are spectral measures.
Remark 1.3. Recently, An and Wang [5] proved the above theorem in dimension
one, which is a special case of our conclusion.

We organize this paper as follows. In Section 2, we introduce some basic defini-
tions and properties of spectral measures. In Section 3, we will give the proof of
Theorem 1.2. We devote Sections 4 and 5 to prove Theorem 1.1.

2. Preliminaries

Let µ be a Borel probability measure with compact support on R2. The Fourier
transform of µ is defined as usual,

µ̂(ξ) =
∫
e−2πi〈ξ,x〉 dµ(x)

for any ξ ∈ R2. We will denote by Z(µ̂) = {ξ : µ̂(ξ) = 0} the zero set of µ̂. In
what follows, eλ stands for the exponential function e−2πi〈λ,x〉. Then for a discrete
set Λ ⊂ R2, E(Λ) = {eλ : λ ∈ Λ} is an orthogonal set of L2(µ) if and only if
µ̂(λ− λ′) = 0 for λ 6= λ′ ∈ Λ, which is equivalent to

(Λ− Λ) \ {0} ⊆ Z(µ̂). (2.1)
In this case, we say that Λ is a bi-zero set of µ. Since bi-zero sets (or spectra) are
invariant under translation, without loss of generality we always assume that 0 ∈ Λ
in this paper.

The following criterion is a universal test to decide whether a countable set
Λ ⊂ R2 is a bi-zero set (a spectrum) of µ or not. For ξ ∈ R2, we write

QΛ(ξ) =
∑
λ∈Λ

|µ̂(ξ + λ)|2.
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Theorem 2.1 ([22]). Let µ be a Borel probability measure with compact support
on R2, and let Λ ⊂ R2 be a countable set. Then

(i) Λ is a bi-zero set of µ if and only if QΛ(ξ) ≤ 1 for ξ ∈ R2;
(ii) Λ is a spectrum of µ if and only if QΛ(ξ) ≡ 1 for ξ ∈ R2;
(iii) QΛ(x) has an entire analytic extension to C2 if Λ is a bi-zero set of µ.

As a simple consequence of Theorem 2.1, the following useful theorem was proved
in [9] and will be used to prove our main result.

Theorem 2.2. Let µ = µ0 ∗ µ1 be the convolution of two probability measures µi,
i = 0, 1, which are not Dirac measures. Suppose that Λ is a bi-zero set of µ0. Then
Λ is also a bi-zero set of µ, but it cannot be a spectrum of µ.

3. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. Let B ⊂ Z2 be a finite set and let
ν be a Borel probability measure with compact support on R2. Write µ = δB ∗ ν.
Then

Z(µ̂) = Z(δ̂B) ∪ Z(ν̂).
Before proving Theorem 1.2, we need the following lemma.

Lemma 3.1. Suppose that {λ1, λ2} is a bi-zero set of µ. Then the following two
statements are equivalent:

(i) if λ1 ∈ Z(δ̂B) and λ2 ∈ Z(ν̂) \ Z(δ̂B), then λ1 − λ2 ∈ Z(δ̂B);
(ii) if λ1, λ2 ∈ Z(ν̂) \ Z(δ̂B), then λ1 − λ2 ∈ Z(ν̂) \ Z(δ̂B).

Proof. If (i) is true, let λ1, λ2 ∈ Z(ν̂) \ Z(δ̂B). Suppose that

λ3 := λ1 − λ2 ∈ Z(δ̂B).

Then λ1 = λ3 − (−λ2) ∈ Z(δ̂B), a contradiction. Hence (ii) holds.
Suppose (ii) holds. Let λ1 ∈ Z(δ̂B) and λ2 ∈ Z(ν̂) \ Z(δ̂B). Suppose that

λ3 := λ1 − λ2 ∈ Z(ν̂) \ Z(δ̂B).

Then λ1 = λ3 − (−λ2) ∈ Z(ν̂) \ Z(δ̂B). This is a contradiction, and thus (i)
follows. �

We define an equivalence relation ∼ on a set Λ ⊆ R2 by
λ ∼ λ′ if and only if λ− λ′ ∈ Z2.

Set [λ] = {λ′ ∈ Λ : λ ∼ λ′}. Then Λ/∼ = {[λ] : λ ∈ Λ} is a partition of Λ.

Proof of Theorem 1.2. Let Λ be a spectrum of µ. Then
(Λ− Λ) \ {0} ⊆ Z(µ̂) = Z(δ̂B) ∪ Z(ν̂).

We take 0 ∈ Λ′ ⊂ Λ as a maximal bi-zero set of δB. Write
Λ′ = {λi}ti=1

for some t ∈ N. Then, for any λ ∈ Λ \ Λ′, there is a λi ∈ Λ′ such that λ − λi ∈
Z(ν̂) \ Z(δ̂B). And we assert that the λi is unique. Suppose, on the contrary, that

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)



SPECTRALITY OF PLANAR MORAN–SIERPINSKI-TYPE MEASURES 69

there exist two distinct λi, λj ∈ Λ′ such that λ− λi, λ− λj ∈ Z(ν̂) \ Z(δ̂B). Since
Λ′ is a bi-zero set of δB, we know that λi − λj ∈ Z(δ̂B). Write

λ1 = λi − λj ∈ Z(δ̂B), λ2 = λ− λj ∈ Z(ν̂) \ Z(δ̂B).

The conditions of the theorem imply that λi−λ = λ1−λ2 ∈ Z(δ̂B), a contradiction.
Then the assertion follows.

Set
Λi =

{
λ ∈ Λ : λ− λi ∈ Z(ν̂) \ Z(δ̂B)

}
∪ {λi}, 1 ≤ i ≤ t.

Then

Λ =
t⋃
i=1

Λi,

where Λi∩Λj = ∅ for any i 6= j. Now we need the following two claims to complete
the proof.

Claim 3.2. (Λi − Λi) \ {0} ⊆ Z(ν̂) \ Z(δ̂B) for any 1 ≤ i ≤ t.

Proof. Fix 1 ≤ i ≤ t. For any λ 6= λ′ ∈ Λi, we have

λ− λi, λ′ − λi ∈ Z(ν̂) \ Z(δ̂B)

or
λ− λi ∈ Z(ν̂) \ Z(δ̂B), λ′ = λi.

The first case follows directly from Lemma 3.1. And it is obvious that λ − λ′ ∈
Z(ν̂) \ Z(δ̂B) in the second case above. Hence the claim is proved. �

Claim 3.3. Λi − Λj ⊆ Z(δ̂B) for any i 6= j.

Proof. For any λ ∈ Λi, λ′ ∈ Λj , we have

λ− λi ∈ Z(ν̂) \ Z(δ̂B) or λ = λi

and
λ′ − λj ∈ Z(ν̂) \ Z(δ̂B) or λ′ = λj .

For the case in which λ − λi, λ′ − λj ∈ Z(ν̂) \ Z(δ̂B), it follows from λ 6∈ Λj that
λ− λj ∈ Z(δ̂B). Then

λ− λ′ = (λ− λj)− (λ′ − λj) ∈ Z(δ̂B).

For the remaining three cases, it is easy to verify that λ − λ′ ∈ Z(δ̂B). Then the
claim follows. �

Due to Λi\{0} ⊂ Λ\{0} ⊂ Z(µ̂) ⊂ A−1Z2 for some integral invertible matrix A,
we know that Λi/∼ is a finite set and Λi/∼ is a partition of Λi. And thus we write
Λi/∼ = {[λi,1], . . . , [λi,ni ]}. Since B ⊂ Z2, for any ξ ∈ (0, 1)2 and 1 ≤ i ≤ t we
have {

|δ̂B (ξ + λ) |2 : λ ∈ Λi
}

=
{
|δ̂B (ξ + λi,k) |2 : 1 ≤ k ≤ ni

}
.
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It follows that for any ξ ∈ (0, 1)2 and 1 ≤ i ≤ t, there exists λi,ξ(i) with ξ(i) ∈
{1, 2, . . . , n1} such that

|δ̂B(ξ + λi,ξ(i))|2 = max
{
|δ̂B (ξ + λ) |2 : λ ∈ Λi

}
.

That is, for any ξ ∈ (0, 1)2, there exist {λi,ξ(i)}ti=1 corresponding to it. As Λi/∼ is
a finite set for each 1 ≤ i ≤ t but there are infinitely many points in (0, 1)2, we can
find a finite set {λ̃i}ti=1 in which λ̃i = λi,ξ(i) for infinitely many ξ ∈ I ⊂ (0, 1)2.
Then, for any ξ ∈ I, we have

1 ≡ QΛ(ξ) =
∑
λ∈Λ

|µ̂(ξ + λ)|2 =
t∑
i=1

∑
λ∈Λi

|δ̂B(ξ + λ)|2|ν̂(ξ + λ)|2

≤
t∑
i=1
|δ̂B(ξ + λ̃i)|2

∑
λ∈Λi

|ν̂(ξ + λ)|2 (3.1)

≤
t∑
i=1
|δ̂B(ξ + λ̃i)|2

≤ 1.

We know from Claim 3.2 that Λi is an orthogonal set of ν for each 1 ≤ i ≤ t; then
the second to last inequality in (3.1) follows from Theorem 2.1. Similarly, the last
inequality in (3.1) follows from Claim 3.3 and Theorem 2.1. And (3.1) implies that,
for any ξ ∈ I,

∑
λ∈Λi

|ν̂(ξ + λ)|2 ≡ 1 and
t∑
i=1
|δ̂B(ξ + λ̃i)|2 ≡ 1.

The property of entire function implies that, for any ξ ∈ R2,

∑
λ∈Λi

|ν̂(ξ + λ)|2 ≡ 1 and
t∑
i=1
|δ̂B(ξ + λ̃i)|2 ≡ 1.

Hence {λ̃i}ti=1 is a spectrum of δB and each Λi is a spectrum of ν. �

4. Sufficiency of Theorem 1.1

We will prove the sufficiency of Theorem 1.1 in this section. Wang and Dong [31]
proved the sufficient case for more general 3-digit sets. In this section, we give
another simple proof for it. This proof depends closely on the zero set of the
Fourier transform µ̂{Mn},D. By the definition of Fourier transform of µ̂{Mn},D and
(1.1), for any ξ ∈ R2 we have

µ̂{Mn},D(ξ) =
∞∏
n=1

δ̂(Mn···M2M1)−1D(ξ).
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Then we have

Z(µ̂{Mn},D) =
∞⋃
n=1
Z(δ̂(Mn···M2M1)−1D) =

∞⋃
n=1

M1 · · ·MnZ(δ̂D).

By calculation, we obtain

Z(δ̂D) =
(

1
3

(
1
2

)
+ Z2

)
∪
(

1
3

(
2
1

)
+ Z2

)
:= 1

3A1 ∪
1
3A2, (4.1)

where

A1 =
(

1
2

)
+ 3Z2, A2 =

(
2
1

)
+ 3Z2.

Then

Z
(
µ̂{Mn},D

)
=
∞⋃
n=1

M1 · · ·MnZ(δ̂D) =
∞⋃
n=1

M1 · · ·Mn

3 (A1 ∪A2). (4.2)

For any k ≥ 1, we define

µk = δM−1
1 D ∗ δ(M2M1)−1D ∗ · · · ∗ δ(Mk···M1)−1D,

µ>k = δ(Mk+1···M1)−1D ∗ δ(Mk+2···M1)−1D ∗ · · · .

Then
µ{Mn},D = µk ∗ µ>k.

Write

C =
{(

0
0

)
,

( 1
3
− 1

3

)
,

(
− 1

31
3

)}
. (4.3)

Then we have the following result. The sufficiency of Theorem 1.1 follows imme-
diately from it.

Theorem 4.1. Let µ{Mn},D be the Moran–Sierpinski-type measure defined as in
(1.1). If 3 | pn and 3 | qn for all n ≥ 2, then µ{Mn},D is a spectral measure with a
spectrum

Λ =
{

m∑
k=1

M1 · · ·Mkck : ck ∈ C and m ≥ 1
}
,

where C is defined as in (4.3).

Proof. Firstly, we will show that Λ is a bi-zero set of µ{Mn},D. For any two distinct
elements λ, λ′ ∈ Λ, we can write

λ = 1
3

(∑m
i=1(p1p2 · · · pi)ci1∑m
i=1(q1q2 · · · qi)ci2

)
, λ′ = 1

3

(∑l
i=1(p1p2 · · · pi)c′i1∑l
i=1(q1q2 · · · qi)c′i2

)
,
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where m, l ≥ 1 and
(
ci1
ci2

)
,

(
ci1
ci2

)
∈ 3C for each i. Let s ≥ 1 be the first index such

that
(
cs1
cs2

)
6=
(
c′s1
c′s2

)
. It follows that

(
cs1 − c′s1
cs2 − c′s2

)
∈ A1 ∪A2, hence

λ− λ′ = M1 · · ·Ms

3

(
(cs1 − c′s1) + 3N1

(cs2 − c′s2) + 3N2

)
for some N1, N2 ∈ Z. This together with (4.2) implies that

λ− λ′ ∈M1 · · ·MsZ(δ̂D) ⊆ Z
(
µ̂{Mn},D

)
.

Therefore Λ is a bi-zero set of µ{Mn},D.
We now show the completeness of Λ. For any m ≥ 1, set

Λm :=
m∑
k=1

M1 · · ·MkC =
{

m∑
k=1

M1 · · ·Mkck : ck ∈ C
}
,

where C is defined as in (4.3). Proceeding as in the proof above, we know that
Λm is a bi-zero set of µm. Notice that #Λm = 3m = dim(L2(µm)). Hence Λm is a
spectrum of µm, and Theorem 2.1 implies that, for any ξ ∈ R2, we have

Qm(ξ) :=
∑
λ∈Λm

|µ̂m(ξ + λ)|2 ≡ 1, QΛ(ξ) =
∑
λ∈Λ

|µ̂{Mn},D(ξ + λ)|2 ≤ 1.

Fix ξ ∈ R2. Write

fm(λ) =
{
|µ̂m(ξ + λ)|2, λ ∈ Λm;
0, λ 6∈ Λm;

f(λ) =
{
|µ̂{Mn},D(ξ + λ)|2, λ ∈ Λ;
0, λ 6∈ Λ.

Then, for any λ ∈ Λ, we have f(λ) = limm→∞ fm(λ) and∑
λ∈Λ

f(λ) =
∑
λ∈Λ

|µ̂{Mn},D(ξ + λ)|2 ≤ 1.

Moreover,

f(λ) = |µ̂{Mn},D(ξ + λ)|2 = |µ̂m(ξ + λ)|2|µ̂>m(ξ + λ)|2

= fm(λ)|µ̂>m(ξ + λ)|2 for all λ ∈ Λm.
(4.4)

We now claim that there exists a constant c > 0 such that for any m ≥ 1,

|µ̂>m(ξ + λ)|2 ≥ c > 0,

where |ξ| < 1
3 and λ ∈ Λm. Note that

|µ̂>m(ξ + λ)|2 =
∞∏

k=m+1

∣∣∣δ̂(Mk···M1)−1D(ξ + λ)
∣∣∣2 .
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So we need to estimate the values of
∣∣∣δ̂(Mk···M1)−1D(ξ + λ)

∣∣∣2 for k ≥ m + 1. For
any λ ∈ Λm, we can write

λ =
(
λ1
λ2

)
=
(∑m

i=1(p1 · · · pi)ci1∑m
i=1(q1 · · · qi)ci2

)
,

where
(
ci1
ci2

)
∈ C. Then

∣∣∣δ̂(Mk···M1)−1D(ξ + λ)
∣∣∣2

=
∣∣∣∣13 (1 + e−2πi(p1···pk)−1(ξ1+λ1) + e−2πi(q1···qk)−1(ξ2+λ2)

)∣∣∣∣2
= 1

9

∣∣∣∣1 + cos 2π(ξ1 + λ1)
p1 · · · pk

+ cos 2π(ξ2 + λ2)
q1 · · · qk

− i
(

sin 2π(ξ1 + λ1)
p1 · · · pk

+ sin 2π(ξ2 + λ2)
q1 · · · qk

) ∣∣∣∣2
= 1

9

∣∣∣∣3 + 2
(

cos 2π(ξ1 + λ1)
p1 · · · pk

+ cos 2π(ξ2 + λ2)
q1 · · · qk

)
+ 2 cos

(
2π(ξ1 + λ1)
p1 · · · pk

− 2π(ξ2 + λ2)
q1 · · · qk

) ∣∣∣∣.

(4.5)

Note that cij ∈
{

0,± 1
3
}

. Then, for any k ≥ m+ 1 and ξ =
(
ξ1
ξ2

)
with |ξ| < 1

3 , we

have ∣∣∣∣ ξ1 + λ1

p1 · · · pk

∣∣∣∣ =
∣∣∣∣ξ1 +

∑m
i=1(p1 · · · pi)ci1
p1 · · · pk

∣∣∣∣
≤ 1

3

∣∣∣∣ 1
p1 · · · pk

+ 1
p2 · · · pk

· · ·+ 1
pm+1 · · · pk

∣∣∣∣
≤ 1

6
1

3k−m−1 .

(4.6)

Similarly, ∣∣∣∣ ξ2 + λ2

q1 · · · qk

∣∣∣∣ ≤ 1
6

1
3k−m−1 . (4.7)

Hence ∣∣∣∣ ξ1 + λ1

p1 · · · pk
− ξ2 + λ2

q1 · · · qk

∣∣∣∣ ≤ 1
6

(
1

3k−m−1 + 1
3k−m−1

)
≤ 1

3
1

3k−m−1 . (4.8)

If k = m+ 1, it follows from (4.6), (4.7), and (4.8) that

cos 2π(ξ1 + λ1)
p1 · · · pm+1

≥ cos π3 = 1
2 , cos 2π(ξ2 + λ2)

q1 · · · qm+1
≥ cos π3 = 1

2 .
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Combining with (4.5), we have∣∣∣δ̂(Mm+1···M1)−1D(ξ + λ)
∣∣∣2 ≥ 1

9

∣∣∣∣5 + 2 cos
(

2π(ξ1 + λ1)
p1 · · · pm+1

− 2π(ξ2 + λ2)
q1 · · · qm+1

)∣∣∣∣ ≥ 1
3 .

If k ≥ m+ 2, then we know from (4.6), (4.7), and (4.8) that

cos 2π(ξ1 + λ1)
p1 · · · pk

≥ cos π3
1

3k−m−1 ≥ 1− π2

18
1

9k−m−1 > 0,

cos 2π(ξ2 + λ2)
q1 · · · qk

≥ cos π3
1

3k−m−1 ≥ 1− π2

18
1

9k−m−1 > 0,

and

cos
(

2π(ξ1 + λ1)
p1 · · · pk

− 2π(ξ2 + λ2)
q1 · · · qk

)
≥ cos 2π

3
1

3k−m−1 ≥ 1− 4π2

18
1

9k−m−1 > 0.

These together with (4.5) imply that∣∣∣δ̂(Mk···M1)−1D(ξ + λ)
∣∣∣2 ≥ 1− 2π2

27
1

9k−m−1 .

Hence

|µ̂>m(ξ + λ)|2 ≥ 1
3

∞∏
k=m+2

(
1− 2π2

27
1

9k−m−1

)

= 1
3

∞∏
k=1

(
1− 2π2

27
1
9k

)
:= c > 0.

Thus the claim holds. Combining this claim with (4.4), we obtain

fm(λ) ≤ 1
c
f(λ) for all λ ∈ Λ.

By the dominated convergence theorem, we conclude that
QΛ(ξ) = lim

m→∞
Qm(ξ) = 1

for any ξ ∈ R2 with |ξ| < 1
3 . As QΛ(ξ) is an entire function, we obtain that

QΛ(ξ) ≡ 1 for any ξ ∈ R2. By Theorem 2.1, we know that µ{Mn},D is a spectral
measure. Now the proof is complete. �

5. Necessity of Theorem 1.1

In this section, we will give the proof of the necessity of Theorem 1.1. For that
purpose, we need the following technical theorem, which plays a crucial role in
the proof. Moreover, the following theorem shows that if µ{Mn},D is a spectral
measure, then any “truncation” of it is still a spectral measure.

Theorem 5.1. Let µ{Mn},D be the Moran–Sierpinski-type measure defined by (1.1)
and pn ≡ ±qn (mod 3) for all n ≥ 2. If µ{Mn},D is a spectral measure, then both
µk and µ>k are spectral measures for any k ≥ 1.
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To prove Theorem 5.1, we need the following lemmas.

Lemma 5.2. Let pn ≡ ±qn (mod 3) for all n ≥ 2. Suppose that µ{Mn},D is a
spectral measure. If {λ1, λ2} is a bi-zero set of µ{Mn},D with λ1 ∈ Z(µ̂k) and
λ2 ∈ Z(µ̂>k) \ Z(µ̂k) for any k ≥ 1, then

λ1 − λ2 ∈ Z(µ̂k).

Proof. Fix k ≥ 1. Since λ1 ∈ Z(µ̂k) and λ2 ∈ Z(µ̂>k) \ Z(µ̂k), we can write

λ1 = M1M2 · · ·Mj1

3 a1, λ2 = M1M2 · · ·Mj2

3 a2,

where j1 ≤ k < j2 and a1, a2 ∈ A1 ∪ A2. Suppose, on the contrary, that there
exists j > k such that λ1 − λ2 ∈ Z(δ̂(Mj ···M2M1)−1D) \ Z(µ̂k). Then there exists
a3 ∈ A1 ∪A2 such that

M1M2 · · ·Mj1

3 a1 −
M1M2 · · ·Mj2

3 a2 = M1M2 · · ·Mj

3 a3,

i.e.,
a1 = Mj1+1 · · ·Mj2a2 +Mj1+1 · · ·Mja3. (5.1)

Write
a1 =

(
a11
a12

)
, a2 =

(
a21
a22

)
, a3 =

(
a31
a32

)
.

Note that ai ∈ A1 ∪A2 for all i = 1, 2, 3. This means that
ai1 6≡ ai2 (mod 3) and ai1, ai2 ∈ Z \ 3Z, i = 1, 2, 3. (5.2)

Without loss of generality, we assume that j2 ≤ j. If j2 = j, then (5.1) implies{
a11 = pj1+1 · · · pj2(a21 + a31)
a12 = qj1+1 · · · qj2(a22 + a32).

Combining with (5.2), we obtain
pj1+1 · · · pj2 ∈ Z \ 3Z and qj1+1 · · · qj2 ∈ Z \ 3Z.

Furthermore, we have
pj1+1 · · · pj2 ≡ qj1+1 · · · qj2 (mod 3).

Hence

Z(δ̂(Mj2 ···M1)−1D) = M1 · · ·Mj1Mj1+1 · · ·Mj2

3 (A1 ∪A2)

⊂ M1 · · ·Mj1

3 (A1 ∪A2) = Z(δ̂(Mj1 ···M1)−1D).

Write
ν = δM−1

1 D ∗ · · · ∗ δ(Mj2−1···M1)−1D ∗ δ(Mj2+1···M1)−1D ∗ · · · .
Then

µ{Mn},D = δ(Mj2 ···M1)−1D ∗ ν and Z(µ̂{Mn},D) ⊆ Z(ν̂).
Let Λ denote a bi-zero set of µ{Mn},D. Then Λ is also a bi-zero set of ν. Hence it
follows from Theorem 2.2 that Λ is not a spectrum of µ{Mn},D. Therefore, µ{Mn},D
is not a spectral measure, a contradiction.
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Now we consider the case j2 < j. Then (5.1) implies{
a11 = pj1+1 · · · pj2(a21 + pj2+1 · · · pja31)
a12 = qj1+1 · · · qj2(a22 + qj2+1 · · · qja32).

(5.3)

This together with (5.2) implies that
pj1+1 · · · pj2 ∈ Z \ 3Z, qj1+1 · · · qj2 ∈ Z \ 3Z

and
a21 + pj2+1 · · · pja31 ∈ Z \ 3Z, a22 + qj2+1 · · · qja32 ∈ Z \ 3Z.

Moreover, applying the condition of pn ≡ ±qn (mod 3) for n ≥ 2, it follows that
a21 + pj2+1 · · · pja31 6≡ a22 + qj2+1 · · · qja32 (mod 3).

Applying (5.2) and (5.3) again, we get
pj1+1 · · · pj2 ≡ qj1+1 · · · qj2 (mod 3).

Proceeding as in the proof of the above case, we get a contradiction. Then we
complete the proof of the lemma. �

Lemma 5.3. Let R be an invertible diagonal matrix. Then Λ is a spectrum of
µ{Mn},D if and only if R−1Λ is a spectrum of µ{Mn},RD.

Proof. Note that

δ̂(Mn···M1)−1RD(ξ) = 1
#D

∑
d∈D

e−2πi〈(Mn···M1)−1Rd,ξ〉

= 1
#D

∑
d∈D

e−2πi〈(Mn···M1)−1d,Rξ〉 = δ̂(Mn···M1)−1D(Rξ)

for any ξ ∈ R2 and n ≥ 1. Then we have

µ̂{Mn},RD(ξ) =
∞∏
n=1

δ̂(Mn···M1)−1RD(ξ) =
∞∏
n=1

δ̂(Mn···M1)−1D(Rξ) = µ̂{Mn},D(Rξ).

Hence ∑
λ∈Λ

|µ̂{Mn},RD(ξ +R−1λ)|2 =
∑
λ∈Λ

|µ̂{Mn},D(Rξ + λ)|2.

The conclusion follows from Theorem 2.1. �

Proof of Theorem 5.1. For any k ≥ 1, we write
B = (MkMk−1 · · ·M2)D + (MkMk−1 · · ·M3)D + · · ·+D.

Then we have
µk = δ(MkMk−1···M1)−1B.

Set
ν = δM−1

k+1D
∗ δ(Mk+2Mk+1)−1D ∗ · · · .

Then
µ{Mn},(Mk···M2M1)D = δB ∗ ν, Z(µ̂{Mn},(Mk···M2M1)D) = Z(δ̂B) ∪ Z(ν̂).
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Notice that
Z(δ̂B) = (M1M2 · · ·Mk)−1Z(µ̂k), Z(ν̂) = (M1M2 · · ·Mk)−1Z(µ̂>k). (5.4)

We know from (4.2) that Z
(
µ̂{Mn},D

)
⊂ 1

3Z
2. This together with (5.4) implies

that
Z(µ̂{Mn},(Mk···M2M1)D) ⊂ (3M1M2 · · ·Mk)−1Z2 := A−1Z2,

where A = 3M1M2 · · ·Mk is an integral invertible matrix. Then we know from
Lemma 5.2 and Theorem 1.2 that both δB and ν are spectral measures. Applying
Lemma 5.3, we obtain that µk and µ>k are all spectral measures. The proof is
completed. �

Recall that
µ2 = δM−1

1 D ∗ δ(M2M1)−1D.

Then

Z(µ̂2) = Z(δ̂M−1
1 D) ∪ Z(δ̂(M2M1)−1D) = M1

3 (A1 ∪A2) ∪ M1M2

3 (A1 ∪A2).

Theorem 5.4. Let p2 ≡ ±q2 (mod 3). If µ2 is a spectral measure, then 3 | p2 and
3 | q2.

Proof. Suppose, on the contrary, that 3 - p2 or 3 - q2. We just prove the case in
which 3 - p2. The proof of the remaining case is similar and we omit it here. Let
Λ denote a bi-zero set of µ2. Then

Λ ⊆ Z(δ̂M−1
1 D) ∪ Z(δ̂(M2M1)−1D) ∪ {0}.

As p2 ≡ ±q2 (mod 3), we know from Lemma 3.1 and Lemma 5.2 that(
Λ ∩ Z(δ̂(M2M1)−1D)− Λ ∩ Z(δ̂(M2M1)−1D)

)
\ {0} ⊂ Z(δ̂(M2M1)−1D).

Then Λ ∩ Z(δ̂(M2M1)−1D) is an orthogonal set of δ(M2M1)−1D, and thus

#(Λ ∩ Z(δ̂(M2M1)−1D)) ≤ 3. (5.5)

For the set Λ ∩ Z(δ̂M−1
1 D), we make the following claim.

Claim 5.5. #(Λ ∩ Z(δ̂M−1
1 D)) ≤ 2.

Proof. Otherwise, we have #(Λ∩Z(δ̂M−1
1 D)) ≥ 3. Let {λ1, λ2, λ3} ⊆ Λ∩Z(δ̂M−1

1 D)
and write

λ1 = 1
3

(
p1a11
q1a12

)
, λ2 = 1

3

(
p1a21
q1a22

)
, λ3 = 1

3

(
p1a31
q1a32

)
,

where
(
ai1
ai2

)
∈ A1 ∪ A2 for i = 1, 2, 3. Then by the pigeonhole principle, without

loss of generality we assume that
(
a11
a12

)
,

(
a21
a22

)
∈ A1. This means that(

a11 − a21
a12 − a22

)
∈ 3Z2.
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Notice that 3 - p2. This together with (4.1) implies that

λ1 − λ2 = 1
3

(
p1(a11 − a21)
q1(a12 − a22)

)
6∈ M1

3 (A1 ∪A2) ∪ M1M2

3 (A1 ∪A2) = Z(µ̂2).

We get a contradiction, and thus #(Λ ∩ Z(δ̂M−1
1 D)) ≤ 2. �

Combining Claim 5.5 with (5.5), we obtain

#Λ = 1 + #(Λ ∩ Z(δ̂M−1
1 D)) + #(Λ ∩ Z(δ̂(M2M1)−1D) \ Z(δ̂M−1

1 D))

≤ 1 + 2 + 3 = 6 < dimL2(µ2) = 9.

Therefore, µ2 is not a spectral measure. This is a contradiction. �

Now we have all the ingredients for the proof of the necessity of Theorem 1.1.

Theorem 5.6. Let pn ≡ ±qn (mod 3) for each n ≥ 2. If µ{Mn},D is a spectral
measure, then 3 | pn and 3 | qn for all n ≥ 2.

Proof. Suppose, on the contrary, that there exists n ≥ 2 such that 3 - pn or 3 - qn.
Set n0 as the first index satisfying 3 - pn0 or 3 - qn0 . From Theorem 5.4, we know
that if 3 - pn0 or 3 - qn0 , then δM−1

n0−1D
∗ δ(Mn0Mn0−1)−1D is not a spectral measure.

Set
ν = δM−1

n0−1D
∗ δ(Mn0Mn0−1)−1D ∗ δ(Mn0+1Mn0Mn0−1)−1D ∗ · · · .

Then we know from Theorem 5.1 that ν is not a spectral measure. And thus
µ>n0−2 is not a spectral measure by Lemma 5.3. Applying Theorem 5.1 again, we
have that µ{Mn},D is not a spectral measure. This is a contradiction. �
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