Education and wages: a sensitivity analysis

Authors

DOI:

https://doi.org/10.52292/j.estudecon.2022.2756

Keywords:

Sensitivity analysis, Quantiles, Treatment effects, Inequality, Education, Wages

Abstract

This paper proposes a sensitivity analysis to analyze the relationship between education and wages. For different policies that increase the proportion of university graduates, we derive bounds for the quantiles of the counterfactual distribution of wages. We then use these bounds to quantify the robustness of various conclusions of interest. Our empirical analysis suggests that an education policy targeting individuals in the lower quantiles of the wage distribution can contribute to reducing inequality even in the presence of considerable selection bias.

Downloads

Download data is not yet available.

References

Carneiro, P., Heckman, J. J., & Vytlacil, E. (2010). Evaluating marginal policy changes and the average effect of treatment for individuals at the margin. Econometrica, 78(1), 377-394. doi: https://doi.org/10.3982/ECTA7089 DOI: https://doi.org/10.3982/ECTA7089

Carneiro, P., Heckman, J. J., & Vytlacil, E. (2011). Estimating marginal returns to education. American Economic Review, 101(6), 2754-2781. DOI: https://doi.org/10.1257/aer.101.6.2754

Fang, Z., & Santos, A. (2019). Inference on directionally differentiable functions. The Review of Economic Studies, 86(1), 377-412. doi: https://doi.org/10.1093/restud/rdy049 DOI: https://doi.org/10.1093/restud/rdy049

Firpo, S., Fortin, N. M., & Lemieux, T. (2009). Unconditional quantile regressions. Econometrica, 77(3), 953-973. DOI: https://doi.org/10.3982/ECTA6822

Heckman, J. J., & Vytlacil, E. (1999). Local instrumental variables and latent variable models for identifying and bounding treatment effects. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4730-4734. doi: https://doi.org/10.1073/pnas.96.8.4730 DOI: https://doi.org/10.1073/pnas.96.8.4730

Heckman, J. J., & Vytlacil, E. (2001). Policy relevant treatment effects. American Economic Review, 91(2), 107-111. doi: 10.1257/aer.91.2.107 DOI: https://doi.org/10.1257/aer.91.2.107

Heckman, J. J., & Vytlacil, E. (2005). Structural equations, treatment effects, and econometric policy evaluation. Econometrica, 73(3), 669-738. doi: https://doi.org/10.1111/j.1468-0262.2005.00594.x DOI: https://doi.org/10.1111/j.1468-0262.2005.00594.x

Hong, H., & Li, J. (2018). The numerical delta method. Journal of Econometrics, 206(2), 379-394. doi: https://doi.org/10.1016/j.jeconom.2018.06.007 DOI: https://doi.org/10.1016/j.jeconom.2018.06.007

Instituto Nacional de Estadísticas y Censos - INDEC (2019). Encuesta Permanente de Hogares Base Individual. Recuperado de https://www.indec.gob.ar/indec/web/Institucional-Indec-BasesDeDatos

Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33-50. doi: 10.2307/1913643 DOI: https://doi.org/10.2307/1913643

Kozlowski, D., Tiscornia, P., Weksler, G., Rosati, G., & Shokida, N. (2020). eph:Argentina's Permanent Household Survey Data and Manipulation Utilities. R package version doi: https://doi.org/10.5281/zenodo.3462677

Martinez-Iriarte, J. (2020). Sensitivity Analysis in Unconditional Quantile Effects. (RedNIE Working Papers No. 52).

Martinez-Iriarte, J., & Sun, Y. (2020). Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment. (UC San Diego, Working Paper Series qt2bc57830) Recuperado de https://escholarship.org/uc/item/2bc57830

Masten, M. A., & Poirier, A. (2020). Inference on Breakdown Frontiers. Quantitative Economics, Econometric Society,11(1), 41-111.doi: https://doi.org/10.3982/QE1288 DOI: https://doi.org/10.3982/QE1288

Rothe, C. (2010). Identification of Unconditional Partial Effects in Nonseparable Models. Economics Letters, 109(3), 171-174. DOI: https://doi.org/10.1016/j.econlet.2010.08.028

Rothe, C. (2012). Partial Distributional Policy Effects. Econometrica, 80(5), 2269- 2301. doi: https://doi.org/10.3982/ECTA9671 DOI: https://doi.org/10.3982/ECTA9671

Rudin, W. (1976). Principles of Mathematical Analysis. New York: McGraw-Hill.

Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511802256 DOI: https://doi.org/10.1017/CBO9780511802256

Published

2022-01-05

How to Cite

Martínez Iriarte, J. (2022). Education and wages: a sensitivity analysis. Estudios económicos, 39(78), 5–31. https://doi.org/10.52292/j.estudecon.2022.2756

Issue

Section

Articles