Equilibrio general en economias con externalidades y conjuntos de produccion no convexos en un espacio de bienes de infinitas dimensiones

Authors

  • Matías N. Fuentes Universidad Nacional de General San Martín

DOI:

https://doi.org/10.52292/j.estudecon.2009.797

Keywords:

general equilibrium, externalities, non convexities, infinitely many commodities, set valued mappings

Abstract

In this paper we consider a general equilibrium model with an infinite dimensional commodity space, with externalities affecting to the consumer and producer sets and the preferences relations. All of these sets are represented by correspondences as well as the producers behavior which extends those used in others papers where there is no externalities or the commodity space is finite dimensional.

Downloads

Download data is not yet available.

References

Ash, R., (1972), Real Analysis and Probability, San Diego, California, Academic Press, Inc.

Bewley, T., (1972), "Existence of Equilibria in Economies with Infinitely Many Commodities", Journal of Economic Theory, 4, pp. 514-540. DOI: https://doi.org/10.1016/0022-0531(72)90136-6

Bonnisseau, J., M., (1997), "Existence of Equilibria in Economies with Externalities and Nonconvexities", Set Valued Analysis 5, pp. 209-226. DOI: https://doi.org/10.1023/A:1008658403530

Bonnisseau, J., M., (2000), "The Marginal Pricing Rule in Economies with Infinitely Many Commodities", Working paper, CERMSEM, Université Paris I, pp.1-20.

Bonnisseau, J., M., y Cornet, B., (1988), "Existence of Equilibrium when Firms Follow Bounded Losses Pricing Rules", Journal of Mathematical Economics, 17, pp. 119-147. DOI: https://doi.org/10.1016/0304-4068(88)90003-1

Bonnisseau, J., M., y Cornet, B., (1990), "Existence of Marginal Cost Pricing Equilibria: The Nonsmooth Case", International Economic Review, Vol. 31, (3), pp. 685-708. DOI: https://doi.org/10.2307/2527169

Bonnisseau, J., M., y Meddeb, M., (1999), "Existence of Equilibria in Economies with Increasing Returns and Infinitely Many Commodities", Journal of Mathematical Economics, Vol. 31, pp. 287-307. DOI: https://doi.org/10.1016/S0304-4068(97)00064-5

Bonnisseau, J., M., y Médecin, M., (2001), "Existence of marginal pricing equilibria in economies with externalities and non-convexities", Journal of Mathematical Economics, Vol. 36, pp.271-294. DOI: https://doi.org/10.1016/S0304-4068(01)00077-5

Clarke, F., (1983), Optimization and Nonsmooth Analysis, Canadian Mathematical Society, Series of Monographs and Advanced Texts.

Cornet, B., (1988), "General Equilibrium Theory and Increasing Returns: Presentation", Journal of Mathematical Economics, Vol. 17, pp.103-118. DOI: https://doi.org/10.1016/0304-4068(88)90002-X

Debreu, G., (1959), Theory of Value, New Haven: Yale University Press.

Dunford, N., and Schwarz, J., (1958), Linear Operators, Part I, Wiley-Interscience, New York.

Hildenbrand, W., (1974), Core and Equilibria of a Large Economy, Princeton University Press, Princeton, New Jersey.

Joseph, J., (1978), "Multifunctions and Graphs", Pacific Journal of Mathematics, Vol. 79, (2). DOI: https://doi.org/10.2140/pjm.1978.79.509

Kamiya, K., (1988), "On The Survival Assumption in Marginal (Cost) Pricing", Journal of Mathematical Economics, Vol.17, pp.261-273. DOI: https://doi.org/10.1016/0304-4068(88)90010-9

Kelley, J., (1962), Topología General, Editorial Universitaria de Buenos Aires, Argentina. Traducción de General Topology, (1955), D. Van Nostrand, Princeton, New Jersey.

Kolmogorov, A. y Fomin, S., (1957), Elements of the Theory of Functions and Functional Analysis, Volume 1 Metric and Normed Spaces. Graylock Press, Rochester, N. Y. Traducido de la primera version rusa (1954) Élementy Teorii Funkcii i Funkcionalnogo Analiza., I. Metriceskie i Normirovannye Prostranstva.

Mas-Colell, A., y Zame, W., (1991), "Equilibrium Theory in Infinite Dimensional Spaces", Hildenbrand, W., and Sonnenschein, H., Handbook of Mathematical Economics, Vol. IV,, 1836-1898, Amsterdam, North-Holland. DOI: https://doi.org/10.1016/S1573-4382(05)80009-8

Mas-Colell, A., Whinston, M. y Green, J., (1995), Microeconomic Theory, Oxford University Press.

Noguchi, M., (1998), "Economies with a continuum of agents with the commodity-price pairing (l∞, l1)", Journal of Mathematical Economics, Vol. 28, pp. 265-287. DOI: https://doi.org/10.1016/S0304-4068(96)00807-5

Nowak, M., (1989) "On the Finest Lebesgue Topology on the Space of essentially bounded measurable functions". Pacific Journal of Mathematics, Vol. 140, (1) pp. 155-161. DOI: https://doi.org/10.2140/pjm.1989.140.155

Schaefer, H., (1971), Topological Vector Spaces, New York and Berlin, Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4684-9928-5

Vulikh, B. (1963), Introduction to Functional Analysis for Scientists and Technologists, Addison-Wesley, London, Traducción al inglés de Vvedeniye v funktisional'nyi analiz, (1958), Moscow, Fizmatgiz.

Published

2009-06-01

How to Cite

Fuentes, M. N. (2009). Equilibrio general en economias con externalidades y conjuntos de produccion no convexos en un espacio de bienes de infinitas dimensiones. Estudios económicos, 26(52), 81–110. https://doi.org/10.52292/j.estudecon.2009.797

Issue

Section

Articles